B.Sc. VI SEMESTER

Mathematics

PAPER - II

COMPLEX ANALYSIS AND RING THEORY

UNIT-IV

RESIDUE THEOREM, JORDAN'S LEMMA AND COUNTER INTEGRATION

Syllabus:
Unit - IV

Residue Theorem, Jordan's Lemma and Contour Integration.
G.I. Bagewadi Arts, Science \& Commerce College, NIPANI

DEPARTMENT OF MATHEMATICS

B.Sc. VI Sem.Paper II

Lecture on poles and singularities

By Dr. M. M. Shankrikopp

Some more examples on poles:

Note: If N^{r} is polynomial function or sinz or cosz or e^{z} and D^{r} is polynomial function then power of linear factors of D^{r} gives order of pole.

Eg. Find poles of $f(z)=\frac{z}{(z-1)(z-2)^{2}}$

Clearly $z=1$ is pole of order 1 i.e simple pole and $z=2$ is a pole of order 2.
Eg. Find poles of $f(z)=\frac{z e^{z}}{(z-2)\left(z^{2}-5 z+6\right)}=\frac{z e^{z}}{(z-2[(z-2)(z-3)]}=\frac{z e^{z}}{(z-2)^{2}(z-3)}$
Clearly $\mathbf{z = 3}$ is pole of order 1 i.e simple pole and $z=2$ is a pole of order 2 .
Eg. Find poles of $f(z)=\frac{e^{z}}{z(z+4)^{3}(z-3)^{4}}$
Clearly $z=0$ simple pole, $z=-4$ is pole of order 3 and $z=3$ is a pole of order 4.
Eg. Find poles of $f(z)=\frac{z}{\left(z^{2}+z+1\right)}=\frac{z}{(z-\alpha)(z-\beta)}$ where $\alpha=\frac{-1+\sqrt{1-4}}{2}=\frac{-1+i \sqrt{3}}{2}$

$$
\& \beta=\frac{-1-i \sqrt{3}}{2}
$$

Clearly $\mathrm{z}=\alpha, \beta$ are simple poles
Theorem: Zeros of analytic function are isolated
(i.e if $z=a$ is zero of $f(z)$ then it has no other zeros other than a in the nhd. of $z=a$)

Proof: Let $f(z)$ be analytic and $z=a$ be zero of the function $f(z)$ of order m then by the definition $f(z)=(z-a)^{m}(\phi(z))$ where $\emptyset(a) \neq 0$.
i.e $\emptyset(z)$ is analytic and non zero in the neighbourhood of $z=a$. Also $(z-a)^{m} \neq 0$ for all values $z \neq a$

Thus there exists no other points in the neighbourhood of $z=a$ at which $f(z)=0$
Hence the zero $\mathrm{z}=a$ is isolated. It is true for all zeros of $\mathrm{f}(\mathrm{z})$.
\therefore zeros of $f(z)$ are isolated.
Theorem: poles of function are isolated.
(i.e if $z=a$ is pole of $f(z)$ then it has no other poles other than a in the nhd. of $z=a$)

Proof: Let $z=a$ be a pole of order m of $f(z)$, then by definition of pole principal part of $f(z)$ in the Laurent's expansion have m no. of terms.
i.e $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\frac{b_{1}}{(z-a)}+\frac{b_{2}}{(z-a)^{2}}+\frac{b_{3}}{(z-a)^{3}}+-\cdots----\cdots------\frac{b_{m}}{(z-a)^{m}}$
i.e $\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\frac{b_{m}}{(z-a)^{m}}+\frac{b_{m-1}}{(z-a)^{m-1}}+-----\frac{b_{2}}{(z-a)^{2}}+\frac{b_{1}}{(z-a)}$ (reverse order)
i.e $f(z)=\frac{1}{(z-a)^{m}}\left[\sum_{n=0}^{\infty} a_{n}(z-a)^{n+m}+b_{m}+b_{m-1}(z-a)+b_{m-2}(z-a)^{2}+---\cdots-------+b_{1}(z-a)^{m-1}\right]$
$=\frac{1}{(z-a)^{m}} \emptyset(z)$
where $\emptyset(z)=\left[\left(\sum_{n=0}^{\infty} a_{n}(z-a)^{n+m}\right)+\mathrm{b}_{\mathrm{m}}+b_{m-1}(z-\mathrm{a})+b_{m-2}(\mathrm{z}-\mathrm{a})^{2}+--\cdots----+\mathrm{b}_{1}(\mathrm{z}-\mathrm{a})^{\mathrm{m}-1}\right]$
Clearly $\emptyset(z)$ does not tend to infinity for any finite value of z as powers of ($z-a$) are positive.
\Rightarrow There is no other pole in the nhd. of $z=a$.
\therefore from (1), $f(z)$ has only the pole $z=a$ and no other poles in the nhd. of $z=a$.
Thus poles of $f(z)$ are isolated.

Note: Both theorems are important

Unit IV

Definition of residue, Cauchy's Residue Theorem and Counter Integration

Definition of Residue (important for 2 marks): Let $f(z)$ be analytic and $z=$ a be a pole of $f(z)$ of order m inside closed curve C then by Lauernt's Theorem we have
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+b_{1} \frac{1}{(z-a)}+b_{2} \frac{1}{(z-a)^{2}}+--------+b_{m} \frac{1}{(z-a)^{m}}$ where
$\mathrm{b}_{\mathrm{m}}=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{-m+1}} d z$
Here particularly $\mathrm{b}_{1}=\frac{\mathbf{1}}{2 \pi i} \int_{\boldsymbol{c}} \frac{f(z)}{(z-a)^{-1+1}} d z=\frac{\mathbf{1}}{2 \pi i} \int_{\boldsymbol{c}} \boldsymbol{f}(\mathbf{z}) d \boldsymbol{z}$ is called residue of the function $f(z)$ at a pole $z=$ a.(i.e coefficient of $\frac{1}{(z-a)}$ in the Prin. Part, i.e the term left after + ve power)

Note: Residues are usually denoted by $\mathrm{R}_{1}, \mathrm{R}_{2},-------$
For example: If $f(z)=\frac{z}{(z-1)(z-3)^{2}}$, clearly $z=1$ is a pole of order 1 (simple pole) and $z=3$ is a pole of order 2

By using partial fraction we have $f(z)=\frac{1}{4(z-1)}-\frac{1}{4(z-3)}+\frac{3}{2(z-3)^{2}}$, here coefficient of $\frac{1}{(z-1)}$ is $\frac{1}{4}$ and coefficient of $\frac{1}{(z-3)}$ is $\frac{-1}{4}$
\therefore residue of $f(z)$ at $z=1$ is $\mathbf{R}_{\mathbf{1}}=\frac{\mathbf{1}}{\mathbf{4}}$ and residue of $f(z)$ at $z=3$ is $\mathbf{R}_{\mathbf{2}}=-\frac{\mathbf{1}}{\mathbf{4}}$

Calculation of residues:

Calculation of residue by using above partial fraction method is tedious if more factors are there in D^{r}. So there are easy methods to calculate residues.
(i) Calculation of residue of $f(z)$ at simple pole (pole of order 1): If $z=$ a is a pole of $f(z)$ of order 1 then by Laurent's Theorem we have

$$
\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\mathrm{b}_{1} \frac{1}{(z-a)}
$$

Multiplying throughout by (z-a), we get
$(\mathrm{z}-\mathrm{a}) \mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n}(z-a)^{n+1}+\mathrm{b}_{1}$
Taking the limit as $z \rightarrow$ a on both the sides we get

$$
\begin{aligned}
& \lim _{z \rightarrow a}(z-a) f(z)=\lim _{z \rightarrow a} \sum_{n=0}^{\infty} a_{n}(z-a)^{n+1}+b_{1} \\
& \text { i.e } \lim _{z \rightarrow a}(z-a) f(z)=0+b_{1}=b_{1}=\lim _{z \rightarrow a}(z-a) f(z)
\end{aligned}
$$

Thus if $z=a$ is a pole of $f(z)$ of order 1 (simple pole) then residue of $f(z)$ is obtained by $R_{1}=\lim _{z \rightarrow a}(z-a) f(z)$
(ii) Calculation of residue of $f(z)$ at pole of order m :

Above method is not applicable if $z=a$ is pole of order more than 1
Thm. (Important for 5 marks) : Prove that $z=$ a be a pole of $f(z)$ of order m then residue of $f(z)$ at $z=a$ is $R_{1}=\frac{1}{(m-1)!} \lim _{z \rightarrow a} \frac{d^{m-1}}{d z^{m-1}}\left((z-a)^{m} f(z)\right.$.
Proof: Let $z=$ a be a pole of $f(z)$ of order m, then
$\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\mathrm{b}_{1} \frac{1}{(z-a)}+\mathrm{b}_{2} \frac{1}{(z-a)^{2}}+\cdots------+\mathrm{b}_{\mathrm{m}} \frac{1}{(z-a)^{m}}$
$=\frac{1}{(z-a)^{m}}\left[\sum_{n=0}^{\infty} a_{n}(z-a)^{n+m}+b_{1}(z-a)^{m-1}+b_{2}(z-a)^{m-2}+-----b_{m}\right]$
$=\frac{1}{(z-a)^{m}} \emptyset(z)$
where $\emptyset(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n+m}+\mathrm{b}_{1}(z-a)^{m-1}+\mathrm{b}_{2}(z-a)^{m-2}+-----\mathrm{b}_{\mathrm{m}}$
$\therefore f(z)=\frac{\emptyset(z)}{(z-a)^{m}}$------------------------(1) where $\emptyset(z)$ is analytic at $z=a$.
By the definition of residue of $\mathrm{f}(\mathrm{z})$ we have $\mathrm{b}_{1}=\frac{1}{2 \pi i} \int_{c} f(z) d z$
$=\frac{1}{2 \pi i} \int_{c} \frac{\emptyset(z)}{(z-a)^{m}} d z=\frac{1}{(m-1)!} \emptyset^{m-1}(a)$ by C. I. formula for $\mathrm{n}^{\text {th }}$ derivative .

$$
\begin{aligned}
=\frac{1}{(m-1)!} \lim _{z \rightarrow a} \emptyset^{m-1}(z) & =\frac{1}{(m-1)!} \lim _{z \rightarrow a} \frac{d^{m-1}}{d z^{m-1}}(\emptyset(z)) \\
& =\frac{1}{(m-1)!} \lim _{z \rightarrow a} \frac{d^{m-1}}{d z^{m-1}}(z-a)^{m} f(z)
\end{aligned}
$$

From (1)

Thus residue of $f(z)$ at pole $z=a$ of order m is
$R_{1}=\frac{1}{(m-1)!} \lim _{z \rightarrow a} \frac{d^{m-1}}{d z^{m-1}}\left((z-a)^{m} f(z)\right.$.

Note: Sometimes residue of $f(z)$ at pole $z=a$ is also written as Res. (f, a)

Examples on calculation of residues:

1. Find the residue of $f(z)=\frac{z}{z^{2}-1}$ at $z=1$
(2017)

Soln.: Now $f(z)=\frac{z}{z^{2}-1}=\frac{z}{(z-1)(z+1)}$
Clearly $z=1$ and $z=-1$ are poles of order 1 , ie simple poles
If R_{1} is residue of $f(z)$ at $z=1$ then $R_{1}=\lim _{z \rightarrow 1}(z-1) f(z)=\lim _{z \rightarrow 1}(z-1) f(z)$

$$
=\lim _{z \rightarrow 1}(z-1) \bar{z} \frac{z}{(z-1)(z+1)}=\frac{1}{2}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{2}$ is a residue at 1 .
2. Find the residue of $f(z)=\frac{e^{z}}{\left(z^{2}+1\right)^{2}}$ at $z=i$
(2017)

Soln.: Now $\mathrm{f}(\mathrm{z})=\frac{e^{z}}{\left(z^{2}+1\right)^{2}} \quad=\frac{e^{z}}{(z+i)^{2}(z-i)^{2}}$
Clearly $z=i$ and $z=-i$ are poles of order 2
If R_{1} is residue of $f(z)$ at $z=i$ then $R_{1}=\frac{1}{(2-1)!} \lim _{z \rightarrow i} \frac{d}{d z}(z-i)^{2} f(z)$

$$
\begin{gathered}
=\lim _{z \rightarrow i} \frac{d}{d z}(\mathrm{z}-\mathrm{i})^{2} \frac{e^{z}}{(z+i)^{2}(z-i)^{2}} \\
=\lim _{z \rightarrow i} \frac{d}{d z} \frac{e^{z}}{(z+i)^{2}}=\lim _{z \rightarrow i} \frac{(z+i)^{2} e^{z}-2(z-i) e^{z}}{(z+i)^{4}}=\lim _{z \rightarrow i} \frac{(z+i) e^{z}-2 e^{z}}{(z+i)^{3}}
\end{gathered}
$$

$\therefore \mathrm{R}_{1}=\frac{2(i-1) e^{i}}{-8 i}=\frac{i(i-1) e^{i}}{4}$ is a residue at i.
3. Find the residue of $f(z)=\frac{z^{4}}{z^{2}+a^{2}}$ at all its poles.
(2016)

Soln.: Now $f(z)=\frac{z^{4}}{z^{2}+a^{2}}=\frac{z^{4}}{(z-a i)(z+a i)}$
Clearly $z=$ ai and $z=-a i$ are poles of order 1 , ie simple poles
If R_{1} is residue of $f(z)$ at $z=a i$ then $R_{1}=\lim _{z \rightarrow a i}(z-a i) f(z)=\lim _{z \rightarrow a i}(z-a i) f(z)$

$$
=\lim _{z \rightarrow a i}(z-a i) \frac{z^{4}}{(z-a i)(z+a i)}=\frac{a^{3}}{2 i}
$$

$\therefore \mathrm{R}_{1}=\frac{a^{3}}{2 i}$ is a residue at $\mathrm{z}=$ ai.
If R_{2} is residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=-$ ai then $\mathrm{R}_{2}=\lim _{z \rightarrow-a i}(\mathrm{z}+\mathrm{ai}) \mathrm{f}(\mathrm{z})=\lim _{\mathrm{z} \rightarrow-a i}(\mathrm{z}+$ ai) $\mathrm{f}(\mathrm{z})$

$$
=\lim _{z \rightarrow-a i}(\mathrm{z}+\mathrm{ai}) \frac{z^{4}}{(z-a i)(z+a i)}=\frac{a^{3}}{-2 i}
$$

$\therefore \mathrm{R}_{2}=-\frac{a^{3}}{2 i}$ is a residue at $\mathrm{z}=-$ ai.
HOME work
5. Find the residue of $f(z)=\frac{2 z+3}{(z-1)(z-2)}$ at $z=2$
6. Find the residue of $f(z)=\frac{z}{z^{2}+1}$ at its all poles
(2015)
7. Find the residue of $f(z)=\frac{z}{(z-1)(z-2)}$ at $z=2$
(2014)
8. Find the residues of $f(z)=z /\left(z^{2}+1\right)$ at its poles
(2015)

HOME work
9. Find the residues of $f(z)=\frac{2 z+3}{(z-1)(z-2)} \quad$ at $z=2$
(2013, 2016)
Soln.: Now $f(z)=\frac{2 z+3}{(z-1)(z-2)}$ Clearly $z=1$ and $z=2$ are poles of order 1 , ie simple poles If R_{1} is residue of $f(z)$ at $z=2$ then $R_{1}=\lim _{z \rightarrow 2}(z-2) f(z)=\lim _{z \rightarrow 2}(z-2) \frac{2 z+3}{(z-1)(z-2)}=\frac{7}{1}$
$\therefore \mathrm{R}_{1}=7$ is a residue at $\mathrm{z}=2$.
10. Find the residues of $f(z)=\frac{e^{z}}{z(z-1)^{2}}$ at $z=0$

Soln.: Now $f(z)=\frac{e^{z}}{z(z-1)^{2}}$ Clearly $z=0$ is simple pole and $z=1$ is pole of order 2 .
If R_{1} is residue of $f(z)$ at $z=0$ then $R_{1}=\lim _{z \rightarrow 0}(z-0) f(z)=\lim _{z \rightarrow 0}(z) \frac{e^{z}}{z(z-1)^{2}}=\frac{1}{1}$
$\therefore \mathrm{R}_{1}=1$ is a residue at $\mathrm{z}=0$.
Cauchy's Residue Theorem (Compulsory question for 5 marks)
Statement: Let $f(z)$ be analytic within and on closed contour C except at finite no. of poles z_{1}, z_{2},
$z_{3},---------z_{n}$ inside C then $c \int f(z) d z \quad d z=2 \pi i\left(R_{1}+R_{2}+R_{3}+--------------------R_{n}\right)=2 \pi i($ sum of residues at these poles inside C)
where $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}----------------\mathbf{R}_{\mathrm{n}}$ are residues at poles $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3},---------\mathbf{z}_{\mathrm{n}}$ resply.

Proof: By hypothesis $z_{1}, z_{2}, z_{3}, \cdots--------z_{n}$ poles of $f(z)$ inside C. Therefore function $f(z)$ is not analytic at these points in side C. Hence construct small circles $\gamma_{1}, \gamma_{2}, \gamma_{3},-------------------------\gamma_{n}$ around thaca moints then $f(z)$ is analytic in the egion bounded by closed curves $C, \gamma_{1}, \gamma_{2}, \gamma_{3},-\cdots----$ By Cauchy's theorem for multi connected region we have

$$
\begin{equation*}
c \int f(z) d z=\gamma_{1} \int f(z) d z+\gamma_{2} \int f(z) d z+\cdots--\gamma_{n} \int f(z) d z \tag{1}
\end{equation*}
$$

By definition of residue of $f(z)$ we have $\mathrm{R}_{1}=\frac{1}{2 \pi \mathrm{i}} \quad \gamma_{1} \int f(z) d z$ where γ_{1} is circle around the pole z_{1} and R_{1} is res. $\therefore \gamma_{1} \int f(z) d z=2 \pi i \mathrm{R}_{1}$

Similarly $\gamma_{2} \int f(z) d z=2 \pi i \mathrm{R}_{2}, \gamma_{3} \int f(z) d z=2 \pi \mathrm{R}_{3}, \quad-\cdots----------\gamma_{n} \int f(z) d z=2 \pi \mathrm{i} \mathrm{R}_{\mathrm{n}}$ Then (1) becomes, $c \int f(z) d z=2 \pi i \mathrm{R}_{1}+2 \pi i \mathrm{R}_{2}+2 \pi i \mathrm{R}_{3}+\cdots--------------2 \pi \mathrm{i} \mathrm{R}_{\mathrm{n}}$

$$
\begin{aligned}
& =2 \pi i\left(R_{1}+R_{2}+R_{3}+----------------R_{n}\right) \\
& =2 \pi i(\text { sum of residues at these poles inside } C)
\end{aligned}
$$

Thus if $f(z)$ be analytic within and on closed contour C except at finite no. of poles $z_{1}, z_{2}, z_{3},--------$ $-z_{n}$ inside C then
$c \int f(z) d z d z=2 \pi i\left(R_{1}+R_{2}+R_{3}+-\cdots-------R_{n}\right)=2 \pi i($ sum of residues at these poles inside C)
where $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}-\cdots-\cdots-\cdots--\cdots---\mathbf{R}_{\mathrm{n}}$ are residues at poles $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \cdots-\cdots-\cdots-\mathbf{z}_{\mathrm{n}}$ resply.

Hence the proof

Evaluation of integrals using C.R. Theorem:

We are going to solve three types of examples using C.R. theorem

(i) $\mathrm{c} \int f(z) d z$ where C is closed curve
(ii) $\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta$
(iii) $\quad \int_{-\infty}^{\infty} f(x) d x$ or $\int_{0}^{\infty} f(x) d x$

Real integrals

Evaluation of Examples on type (i): $c \int f(z) d z$ where C is closed curve
We already solved this type of examples by Cauchy's integral formula, but by usingC. R. theorem easily we evaluate.
Procedure: 1. Consider $f(z)$, find poles and their orders.
2. See which poles are inside C
3. Calculate residues at these poles by calculation of residues method
4. Apply C. R. thm $c \int f(z) d z \quad d z=2 \pi i$ (sum of residues at these poles inside C)
1.Evaluate $\mathrm{c} \int \frac{\sin z}{(z-\pi)^{3}}$ dz where C ; $|z|=4$
(2016)

Soln.: Now given intergal $c \int f(z) d z=c \int \frac{\sin z}{(z-\pi)^{3}} d z$ where $f(z)=\frac{\sin z}{(z-\pi)^{3}} \quad$ Clearly $z=\pi$ is a pole of order 3 which is inside the circle $|z|=4$.
If R_{1} is residue of $f(z)$ at $z=\pi$ then $R_{1}=\frac{1}{(3-1)!} \lim _{z \rightarrow \pi} \frac{d^{2}}{d z^{2}}(z-\pi)^{3} f(z)$

$$
\begin{aligned}
& =\frac{1}{2!} \lim _{z \rightarrow \pi} \frac{d^{2}}{d z^{2}}(z-\pi)^{3} \frac{\sin z}{(z-\pi)^{2}} \\
& =\lim _{z \rightarrow \pi} \frac{d^{2}}{d z^{2}} \sin z=\lim _{z \rightarrow \pi}(-\sin z)=0 \\
& =0
\end{aligned}
$$

\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{\sin z}{(z-\pi)^{3}} \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}\right)=2 \pi \mathrm{i}(0)=0$

2.Evaluate $\int d z$ over closed contour C.

$(2014,2015)$
Soln: Given integral $\int f(z) d z=\int d z$ where $f(z)=1$ which is analytic every where.
\therefore By Cauchy's Thm ${ }_{c} \int \mathrm{dz}=0$.
3. Evaluate $\int \frac{z}{z^{2}+2 z-3} d z$ where C is $|z|=2 \quad$ (2017)

Soln.: Now given intergal $c \int f(z) d z=\quad c \int \frac{z}{z^{2}+2 z-3} d z$ where $f(z)=\frac{z}{z^{2}+2 z-3}=\frac{z}{(z-1)(z+3)}$
Clearly $z=1$ and -3 are simple poles of $f(z)$ for which $z=1$ is inside the circle $|z|=2$.
\therefore We have to calculate residue only at $\mathrm{z}=1$.
If R_{1} is residue of $f(z)$ at $z=1$ then $R_{1}=\lim _{z \rightarrow 1}(z-1) f(z)=\lim _{z \rightarrow 1}(z-1) f(z)$

$$
=\lim _{z \rightarrow 1}(z-1) \overline{(z-1)(z+3)}=\frac{1}{4}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{4}$ is a residue at 1 .
\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{z}{z^{2}+2 z-3} \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}\right)=2 \pi \mathrm{i}\left(\frac{1}{4}\right)=\frac{\pi \mathrm{i}}{2}$
4. Prove that $d \frac{e^{z}}{z^{n+1}} d z=\frac{2 \pi \mathrm{i}}{n!} \quad$ where C is $|z|=2$.

Soln.: Now given integral $c \int f(z) d z=c \int \frac{e^{z}}{z^{n+1}} d z$ where $f(z)=\frac{e^{z}}{z^{n+1}}$ Clearly $z=0$ is a pole of order $(n+1)$ which is inside the circle $|z|=2$.
If R_{1} is residue of $f(z)$ at $z=0$ then $R_{1}=\frac{1}{(n+1-1)!} \lim _{z \rightarrow 0} \frac{d^{n}}{d z^{n}}(z-0)^{n} f(z)$

$$
\begin{aligned}
& =\frac{1}{n!} \lim _{z \rightarrow 0} \frac{d^{n}}{d z^{n}}(z)^{n} \frac{e^{z}}{(z)^{n}} \\
& =\frac{1}{n!} \lim _{z \rightarrow \pi} \frac{d^{n}}{d z^{n}} \boldsymbol{e}^{\boldsymbol{z}}=\frac{1}{n!} \lim \boldsymbol{e}^{\boldsymbol{z}}=\frac{1}{n!}
\end{aligned}
$$

\therefore By C. R. Thm $c \int f(z) d z=\int \frac{e^{z}}{z^{n+1}} \quad d z=2 \pi i\left(R_{1}\right)=2 \pi i\left(\frac{1}{n!}\right)=\frac{2 \pi \mathrm{i}}{n!}$
5. Evaluate ${ }_{c} z^{3} /(z+1) d z$ if c is $|z|=2$

Soln: Now given intergal $c \int f(z) d z=c \int \frac{z^{3}}{z+1} d z$ where $f(z)=\frac{z^{3}}{z+1}$
Clearly $z=-1$ is simple pole of $f(z)$ which is inside the circle $|z|=2$.
\therefore We have to calculate residue only at $z=-1$.
If R_{1} is residue of $f(z)$ at $z=-1$ then $R_{1}=\lim _{z \rightarrow-1}(z+1) f(z)=\lim _{z \rightarrow-1}(z+1) \frac{z^{3}}{z+1}=-1$

$$
=
$$

$\therefore \mathrm{R}_{1}=-1$ is a residue at -1 .
\therefore By C. R. Thm c $\int f(z) d z=c \int \frac{z^{3}}{z+1} d z=2 \pi i\left(R_{1}\right)=2 \pi i(-1)=-2 \pi i$
6. Evaluate $\int d z /(z-2)$ if c is $|z-2|=4$
7. Evaluate $d d z / z\left(z^{2}+4\right)$ if c is $|z|=1$

Try 6 and 7 as exercise.
8. Obtain residues of $f(z)=\frac{\cos z}{z(z-1)^{2}}$ at all singularities and hence evaluate $c \int f(z) d z$ where c is $|z|=2$

Soln: Now given intergal $c \int f(z) d z=c \int \frac{\boldsymbol{\operatorname { c o s } z}}{\boldsymbol{z}(\mathbf{z}-\mathbf{1})^{2}}$ dz where $\mathrm{f}(\mathrm{z})=\frac{\boldsymbol{\operatorname { c o s } z}}{\boldsymbol{z}(\mathbf{z}-\mathbf{1})^{2}}$ Clearly $\mathrm{z}=0$ is a pole of order 1 and $z=1$ pole of order 2 , both are inside the circle $|z|=2$.
If R_{1} is residue of $f(z)$ at pole $z=0$ then $R_{1}=\lim _{z \rightarrow 0}(z) f(z)=\lim _{z \rightarrow 0}(z) \frac{\cos z}{z(z-1)^{2}}=\lim _{z \rightarrow 0} \frac{\cos z}{(z-1)^{2}}=1$
$\therefore \mathrm{R}_{1}=1$
If R_{2} is residue of $f(z)$ at pole $z=1$ then $R_{2}=\frac{1}{(2-1)!} \lim _{z \rightarrow 1} \frac{d}{d z}(z-1)^{2} f(z)$

$$
=\frac{1}{2!} \lim _{z \rightarrow 1} \frac{d}{d z}(\mathrm{z}-1)^{2} \frac{\cos z}{z(z-1)^{2}}
$$

$$
=\lim _{z \rightarrow 1} \frac{d}{d z}\left[\frac{\cos z}{z}\right]=\lim _{z \rightarrow 1}\left[\frac{z(-\sin z)-\cos z(1)}{z^{2}}=-(\sin 1+\cos 1)\right.
$$

$$
R_{2}=-(\sin 1+\cos 1)
$$

\therefore By C. R. Thm $\mathrm{c} \int f(z) d z=\mathrm{c} \int \frac{\cos z}{z(z-1)^{2}} \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=2 \pi \mathrm{i}(1+\sin 1+\cos 1)$.

9. Evaluate $c \int z /\left[\left(z^{2}+1\right)\left(z^{2}-9\right)\right] d z$ where c is the circle $|z|=2$

Soln: Now given intergal $c \int f(z) d z=c \int \frac{z}{\left(z^{2}+\mathbf{1}\right)\left(z^{2}-\mathbf{9}\right)} d z$ where $f(z)=\frac{z}{\left(z^{2}+\mathbf{1}\right)\left(z^{2}-\mathbf{9}\right)}=$ $\frac{z}{(z+i)(z-i)(z+3)(z-3)}$ and C is circle $|z|=2$

Clearly $\mathrm{z}=i,-i, 3,-3$ simple poles for which $\mathrm{z}=i,-i$ lie inside the circle C .
\therefore we have to calculate residues only at these two poles.

$$
\begin{aligned}
& \text { If } \mathrm{R}_{1} \text { is residue of } \mathrm{f}(\mathrm{z}) \text { at pole } \mathrm{z}=i \text { then } \mathrm{R}_{1}=\lim _{z \rightarrow i}(\mathrm{z}-\mathrm{i}) \mathrm{f}(\mathrm{z}) \\
& \qquad=\lim _{z \rightarrow i}(\mathrm{z}-\mathrm{i}) \frac{\mathrm{z}}{(\mathrm{z}+i)(\mathrm{z}-i)(\mathrm{z}+3)(\mathrm{z}-3)} \\
& \\
& =\lim _{z \rightarrow i} \frac{z}{(\mathrm{z}+i)\left(\mathrm{z}^{2}-9\right)}=\frac{i}{(2 i)(-10)}=\frac{1}{-20}
\end{aligned}
$$

$\therefore \mathrm{R}_{1}=-\frac{1}{20}$
If R_{2} is residue of $f(z)$ at pole $z=-i$ then $R_{2}=\lim _{z \rightarrow-i}(z+i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-i}(\mathrm{z}+\mathrm{i}) \frac{z}{(z+i)(z-i)(z+3)(z-3)} \\
& =\lim _{z \rightarrow-i} \frac{z}{(z-i)\left(z^{2}-9\right)}=\frac{-i}{(-2 i)(-10)}=-\frac{1}{20}
\end{aligned}
$$

$\therefore \mathrm{R}_{2}=-\frac{1}{20}$
\therefore By C. R. Thm $\left.\mathrm{c} \int f(z) d z=\mathrm{c} \int \frac{z}{\left(z^{2}+1\right)\left(z^{2}-9\right)} d z=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=2 \pi \mathrm{i}\left(-\frac{1}{20}-\frac{1}{20}\right)\right)=-\frac{\pi \mathrm{i}}{5}$
10. Evaluate $c \int d z /\left[z^{2}(z+4)\right]$ where c is the circle $|z|=5$

Soln: Now given intergal $c \int f(z) d z=c \int \frac{\mathbf{1}}{z^{2}(z+4)} d z$ where $f(z)=\frac{\mathbf{1}}{z^{2}(z+4)}$ Clearly $z=0$ is a pole of order 2 and $z=-4$ is simple pole both are inside the circle $|z|=5$.
If R_{1} is residue of $f(z)$ at pole $z=0$ then $R_{1}=\frac{1}{(2-1)!} \lim _{z \rightarrow 0} \frac{d}{d z} z^{2} f(z)$

$$
\begin{gathered}
=\frac{1}{2!} \lim _{z \rightarrow 0} \frac{d}{d z} z^{2} \frac{1}{z^{2}(z+4)} \\
=\lim _{z \rightarrow 0} \frac{d}{d z}\left[\frac{1}{z+4}\right]=\lim _{z \rightarrow 0}\left[-\frac{1}{(z+4)^{2}}\right]=-\frac{\mathbf{1}}{\mathbf{1 6}}
\end{gathered}
$$

$\therefore \mathrm{R}_{1}=-\frac{1}{16}$

If R_{2} is a residue of $f(z)$ at simple pole $z=-4$ then $R_{2}=\lim _{z \rightarrow-4}(z+4) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-4}(z+4) \frac{1}{z^{2}(z+4)} \\
& =\lim _{z \rightarrow-4} \frac{1}{z^{2}}=\frac{1}{16}
\end{aligned}
$$

$\therefore \mathrm{R}_{2}=\frac{1}{16}$
\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{\mathbf{1}}{z^{2}(z+4)} d z=2 \pi i\left(R_{1}+R_{2}\right)=2 \pi i\left(\frac{\mathbf{1}}{16}+\frac{\mathbf{1}}{\mathbf{1 6}}\right)=0$
11. Evaluate $c \int z d z /\left[(z+i)\left(9-z^{2}\right)\right] d z$ where c is the circle $|z|=2$ (2014)

Exercise

Soln:
12. Evaluate $c \int(2 z+1) /\left(z^{2}+z-6\right) d z$ where c is the circle $|z|=4 \quad$ (2008)

Soln: Now given intergal $c \int f(z) d z=c \int \frac{2 z+1}{z^{2}+z-6} d z$ where $f(z)=\frac{2 z+1}{z^{2}+z-6}=\frac{2 z+1}{(z+3)(z-2)}$ Clearly $z=-3$ and $z=2$ are simple poles and both lie inside the circle $|z|=4$.
If R_{1} is residue of $f(z)$ at pole $z=-3$ then $R_{1}=\lim _{z \rightarrow-3}(z+3) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-3}(z+3) \frac{2 z+1}{(z+3)(z-2)} \\
& =\lim _{z \rightarrow-3} \frac{2 z+1}{(z-2)}=\frac{-5}{-5}=1
\end{aligned}
$$

$\therefore \mathrm{R}_{1}=1$

If R_{2} is a residue of $f(z)$ at simple pole $z=2$ then $R_{2}=\lim _{z \rightarrow 2}(z-2) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow 2}(z-2) \frac{2 z+1}{(z+3)(z-2)} \\
& =\lim _{z \rightarrow 2} \frac{2 z+1}{(z+3)}=\frac{5}{5}=1
\end{aligned}
$$

$\therefore \mathrm{R}_{2}=1$
\therefore By C. R. Thm c $\int f(z) d z=c \int \frac{2 z+1}{z^{2}+z-6} d z=2 \pi i\left(R_{1}+R_{2}\right)=2 \pi \mathrm{i}(1+1)=4 \pi \mathrm{i}$
13. Evaluate $c \int(2 z+1) /(z-2)(z+3)(z+1) d z$ where c is the circle $|z|=5 / 2$

Soln: Now given intergal $c \int f(z) d z=c \int \frac{2 z+1}{(z-2)(z+3)(z+1)} d z$ where $f(z)=\frac{2 z+1}{(z-2)(z+3)(z+1)}$ and C is $|z|=\frac{5}{2}$ Clearly $z=-3, z=2$ and $z=-1$ are simple poles for which $z=2$ and -1 lie inside the circle $|z|=\frac{5}{2}$.
If R_{1} is residue of $f(z)$ at pole $z=-1$ then $R_{1}=\lim _{z \rightarrow-1}(z+1) f(z)$

$$
\begin{aligned}
= & \lim _{z \rightarrow-1}(z+1) \frac{2 z+1}{(z+3)(z-2)(z+1)} \\
\mathrm{R}_{1} & =\lim _{z \rightarrow-1} \frac{2 z+1}{(z-2)(z+3)}=\frac{-1}{-6}=\frac{1}{6}
\end{aligned}
$$

If R_{2} is a residue of $f(z)$ at simple pole $z=2$ then $R_{2}=\lim _{z \rightarrow 2}(z-2) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow 2}(z-2) \frac{2 z+1}{(z+3)(z-2)(z+1)} \\
& =\lim _{z \rightarrow 2} \frac{2 z+1}{(z+3(z+1))}=\frac{5}{15}=\frac{1}{5}
\end{aligned}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{6} \quad$ and $\mathrm{R}_{2}=\frac{1}{5}$
\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{2 z+1}{(z-2)(z+3)(z+1)} d z=2 \pi i\left(R_{1}+R_{2}\right)=2 \pi i\left(\frac{1}{6}+\frac{1}{5}\right)=2 \pi i\left(\frac{11}{\mathbf{3 0}}\right)=\left(\frac{11 \pi \mathrm{i}}{15}\right)$
14. Evaluate (i) $c \int d z /\left[z\left(z^{2}+4\right)\right]$ where c is the circle $|z|=5$ (ii) $c \int \frac{z^{2}-4}{z\left(z^{2}+9\right)} d z$ where $C ;|z|=1$ (2015)

Soln: (i) Now given intergal $c \int f(z) d z=c \int \frac{\mathbf{1}}{\boldsymbol{z}\left(z^{2}+4\right)} d z$ where $f(z)=\frac{\mathbf{1}}{z\left(z^{2}+\mathbf{4}\right)}=\frac{\mathbf{1}}{\mathbf{z (z + 2 i) (z - 2 i)}}$ and C is $|z|=5$ Clearly $z=0, z=2 i$ and $z=-2 i$ are simple poles and all lie inside the circle $|z|=5$.
\therefore we have to calculate residues at all these poles.
If R_{1} is residue of $f(z)$ at pole $z=0$ then $R_{1}=\lim _{z \rightarrow 0} Z f(z)=\lim _{z \rightarrow 0} z \frac{1}{z\left(z^{2}+4\right)}$

$$
=\lim _{z \rightarrow 0} \frac{1}{\left(z^{2}+4\right)}=\frac{1}{4}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{4}$
If R_{2} is a residue of $f(z)$ at simple pole $z=2 i$ then $R_{2}=\lim _{z \rightarrow 2 i}(z-2 i) f(z)$

$$
=\lim _{z \rightarrow 2 i}(z-2 i) \frac{1}{z(z+2 i)(z-2 i)}
$$

$$
=\lim _{z \rightarrow 2 i} \frac{1}{z(z+2 i)}=\frac{1}{-8}
$$

$\therefore \mathrm{R}_{2}=-\frac{1}{8}$
If R_{3} is a residue of $f(z)$ at simple pole $z=2 i$ then $R_{3}=\lim _{z \rightarrow-2 i}(z+2 i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-2 i}(z+2 i) \frac{1}{z(z+2 i)(z-2 i)} \\
& =\lim _{z \rightarrow-2 i} \frac{1}{z(z-2 i)}=\frac{1}{-8}
\end{aligned}
$$

$\therefore \mathrm{R}_{3}=-\frac{1}{\mathbf{8}}$
\therefore By C. R. Thm $\mathrm{c} \int f(z) d z=\mathrm{c} \int \frac{\mathbf{1}}{\boldsymbol{z}\left(\mathrm{z}^{2}+4\right)} \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)=2 \pi \mathrm{i}\left(\frac{\mathbf{1}}{\mathbf{4}}-\frac{\mathbf{1}}{\mathbf{8}}-\frac{\mathbf{1}}{\mathbf{8}}\right)=2 \pi \mathrm{i}(\mathbf{0})=\mathbf{0}$
(ii) Now given intergal $c \int f(z) d z=c \int \frac{z^{2}-4}{z\left(z^{2}+9\right)} d z$ where $f(z)=\frac{z^{2}-4}{z\left(z^{2}+9\right)}=\frac{z^{2}-4}{z(z+3 i)(z-3 i)}$ and C is $|z|=1$ Clearly $z=0, z=3 i$ and $z=-3 i$ are simple poles for which only $z=0$ lie inside the circle $|z|=1$.
\therefore we have to calculate residues at all the pole $\mathrm{z}=0$.
If R_{1} is residue of $f(z)$ at pole $z=0$ then $R_{1}=\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} z \frac{z^{2}-4}{z\left(z^{2}+9\right)}$

$$
=\lim _{z \rightarrow 0} \frac{-4}{\left(z^{2}+9\right)}=\frac{1}{9}
$$

$\therefore \mathrm{R}_{1}=\frac{-4}{9}$
\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{z^{2}-4}{z\left(z^{2}+9\right)} d z=2 \pi i\left(R_{1}\right)=2 \pi i\left(\frac{-4}{9}\right)=\frac{-8}{9} \pi i$
(iv) $\quad c \int_{z(z-1)(z-2)} d z$ where $C ;|z|=3(2011,2015,2016)$
(v) (iv) $c \int \frac{3 z-1}{\left(z^{3}-z\right)} d z$ where $C ;|z|=2$ (2015)
(v) $c \int \frac{d z}{z^{3}(z-1)} \quad$ where $C ;|z|=2(2012,2015)$

Try above three example as exercise

(vi) $c \int \frac{d z}{\left(4 z^{2}-9\right)}$ where $C ;$ (a) $|z|=I \quad$ (b) $|z-1|=1(2014,2016)$

Soln: (a) Now given intergal $\mathrm{c} \int f(z) d z=\quad \mathrm{c} \int \frac{\mathbf{1}}{\left(\mathbf{4 z ^ { 2 } - 9)}\right.} \mathrm{dz}$ where $\mathrm{f}(\mathrm{z})=\frac{\mathbf{1}}{\left(4 z^{2}-\mathbf{9}\right)}=\frac{\mathbf{1}}{(2 z+3)(2 z-3)}$ and C is $|z|=1$ Clearly $z=\frac{-3}{2}$ and $z=\frac{3}{2}$ are simple poles and both lie outy
$|z|=1$.
\therefore function is analytic inside C and hence by Cauchy's Theorem $c \int f(z) d z=0$
(b) Now given intergal $c \int f(z) d z=c \int \frac{1}{\left(4 z^{2}-9\right)} d z$ where $f(z)=\frac{\mathbf{1}}{\left(4 z^{2}-9\right)}=\frac{\mathbf{1}}{(2 z+3)(2 z-3)}$ $=\frac{1}{4\left(z+\frac{3}{2}\right)\left(z-\frac{3}{2}\right)}$
and C is $|z-1|=1$

Clearly $z=\frac{-3}{2}$ and $z=\frac{3}{2}$ are simple poles of $f(z)$ for which $z=\frac{3}{2}$ lie inside the circle $|z-1|=1$
[distance between $\frac{-3}{2}$ and centre $(1,0)$ is $\sqrt{\left(\frac{-3}{2}-1\right)^{2}}=\frac{5}{2}>$ radius $1, \therefore z=\frac{-3}{2}$ lies outside C]
\therefore we have to calculate residues at all the pole $\mathrm{z}=\frac{3}{2}$.
If R_{1} is residue of $f(z)$ at pole $z=\frac{3}{2}$ then $R_{1}=\lim _{z \rightarrow \frac{3}{2}}\left(z-\frac{3}{2}\right) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow \frac{3}{2}}\left(z-\frac{3}{2}\right) \frac{1}{4\left(z+\frac{3}{2}\right)\left(z-\frac{3}{2}\right)} \\
& =\lim _{z \rightarrow \frac{3}{2}} \frac{1}{4\left(z+\frac{3}{2}\right)}=\frac{1}{12}
\end{aligned}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{12}$
\therefore By C. R. Thm $c \int f(z) d z=c \int \frac{1}{\left(4 z^{2}-9\right)} d z=2 \pi i\left(\mathrm{R}_{1}\right)=2 \pi \mathrm{i}\left(\frac{1}{12}\right)=\frac{1}{6} \pi \mathrm{i}$

HOME WORK

(vii) $c \int \frac{z+4}{z^{2}+2 z+5} d z$ where $C ;|z+| I=2 \quad$ (2017) (viii) $c \int \frac{z+4}{z^{2}(z-1)} d z$ where $C ;|z|=3$
(2018)
(viii) Prove that) $c \int \frac{3 z-1}{(z-3)(z+1)} \mathrm{dz}=6 \pi i$ where $C ;|z|=4$

Proof: Now given intergal $c \int f(z) d z=c \int \frac{3 z-1}{(z-3)(z+1)}$ dz where $f(z)=\frac{3 z-1}{(z-3)(z+1)}$ and C is $|z|=4$ Clearly $z=3$ and $z=-1$ are simple poles and both lie intside the circle $|z|=4$.
\therefore we have to calculate residues at all the pole $z=3$ and 1 both.
If R_{1} is residue of $f(z)$ at pole $z=3$ then $R_{1}=\lim _{z \rightarrow 3}(z-3) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow 3}(z-3) \frac{3 z-1}{(z-3)(z+1)} \\
& =\lim _{z \rightarrow 3} \frac{3 z-1}{(z+1)}=\frac{8}{4}=2
\end{aligned}
$$

$\therefore \mathrm{R}_{1}=\mathbf{2}$
If R_{2} is residue of $f(z)$ at pole $z=-1$ then $R_{1}=\lim _{z \rightarrow-1}(z+1) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-1}(z+1) \frac{3 z-1}{(z-3)(z+1)} \\
& =\lim _{z \rightarrow-1} \frac{3 z-1}{(z-3)}=\frac{-4}{-4}=1
\end{aligned}
$$

$\therefore \mathrm{R}_{2}=1$
\therefore By C. R. Thm $\mathrm{c} \int f(z) d z=\mathrm{c} \int \frac{3 z-1}{(z-3)(z+1)} \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=2 \pi \mathrm{i}(2+1)=6 \pi \mathrm{i}$
15. Find residues of $f(z)=\frac{1}{z\left(z^{2} 3 z+2\right)}$ at $z=0,1$ and -2 and hence evaluate $c \int f(z) d z$ where $c:|z|=3$. Soln:

II. Evaluation of real integral of the type $\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta$

Contour Integration: Evaluation of integral of above type by our usual real integral is sometimes tedious, hence in such cases we reduce above integral to $c \int f(z) d z$ taken around the closed contour C , and thus is called contour integration.
[In PUC, we already come across the examples of the type $\int_{0}^{2 \pi} \frac{1}{a+b \cos \theta} d \theta, \int_{0}^{2 \pi} \frac{1}{a+b \sin \theta} d \theta$ etc.
Such type of examples can be solved easily using contour integration.]
Procedure for evaluation above integral:
Consider given integral $\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta$ -
Take substitution $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{e}^{-\mathrm{i} \theta}=\frac{1}{\mathrm{z}}$ and $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)$ and $\sin \theta=\frac{1}{2 i}\left(\mathrm{z}-\frac{1}{\mathrm{z}}\right)$ and also $\mathrm{e}^{\mathrm{i} \theta} \boldsymbol{i} \mathrm{d} \theta=\mathrm{dz}=>\mathrm{d} \theta=\frac{d z}{i e^{i \theta}}=\frac{d z}{i z}$
$\therefore \mathrm{d} \theta=\frac{d z}{i z}$ and $\theta=0$ to 2π is for circle $\mathrm{C}:|z|=1$
By all these substitution (1) becomes

$$
\begin{aligned}
\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta=c \int f & \left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(\mathbf{z}-\frac{1}{z}\right)\right) d z \\
& =c \int f(z) d z, \text { anyhow terms inside the brocket are functions of } z .
\end{aligned}
$$

And the integral $c \int f(z) d z$ can be evaluated by C.R. theorem as in previous examples taken around unit circle C : $\mid \mathbf{z |}=\mathbf{1}$
NOTE: For the examples of above type this substitution is fixed and is C is also always unit circle $|z|=1$.
Examples:(compulsory one example for 5 marks)
(i) If N^{r} is constant and D^{r} either in terms of $\sin \theta$ or $\cos \theta$

1. Using contour integration, evaluate $\quad \int_{0} \int^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$
(2014, 2015, 2018)

Soln: Given integral $0_{0} \int^{2 \pi} \frac{d \theta}{5+4 \cos \theta)}$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this)
And $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes $0 \int^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \cos \theta}=c \int \frac{\frac{d z}{i z}}{\left(5+4 \frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right)\right)}=c \int \frac{\frac{d z}{i z}}{5+2\left(\frac{z^{2}+1}{z}\right)}$

$$
\begin{align*}
& =c \int \frac{\frac{d z}{i z}}{\left(\frac{5 z+2 z^{2}+2}{z}\right)}=c \int \frac{d z}{\mathrm{iz}\left(\frac{5 z+2 z^{2}+2}{z}\right)} \\
& =\frac{1}{i} c \int \frac{d z}{2 z^{2}+5 z+2}=\frac{1}{i} c \int f(z) d z \tag{2}
\end{align*}
$$

Where $f(z)=\frac{1}{2 z^{2}+5 z+2}=\frac{1}{(2 z+1)(z+2)}=\frac{1}{2\left(z+\frac{1}{2}\right)(z+2)}\left(D^{r}\right.$ is having linear factors)
Clearly $z=-\frac{1}{2}$ and $z=-2$ are simple poles of $f(z)$ for which $z=-\frac{1}{2}$ lies inside the circle $|z|=1$
\therefore calculate residue at $\mathrm{z}=-\frac{1}{2}$
If R_{1} is the residue of $f(z)$ at pole $z=-\frac{1}{2}$ (simple pole)
Then $R_{1}=\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) f(z)=\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) \frac{1}{2\left(z+\frac{1}{2}\right)(z+2)}=\lim _{z \rightarrow-\frac{1}{2}} \frac{1}{2(z+2)}$

$$
=\frac{1}{2\left(-\frac{1}{2}+2\right)}=\frac{1}{2\left(\frac{3}{2}\right)}=\frac{1}{3}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{3}$
By C.R. Thm we have $c \int f(z) d z=2 \pi \mathrm{I} \mathrm{R}_{1}=2 \pi \mathrm{i}\left(\frac{\mathbf{1}}{\mathbf{3}}\right)$
Substitute (3) in (2) then given integral $0 \int^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \cos \theta}=\frac{1}{i} c \int f(z) d z=\frac{1}{i}\left(\frac{2 \pi \mathrm{i}}{3}\right)=\frac{2 \pi}{3}$
Hence ${ }_{0} \int^{2 \pi} \frac{d \theta}{5+4 \cos \theta}=\frac{2 \pi}{3}$ (answer should be in terms of real no. as integral is real)
(Same procedure for examples of these types)
2. Using contour integration prove that $0_{0}{ }^{2 \pi} d \theta /(a+b \cos \theta)=2 \pi / \sqrt{a^{2}-b^{2}}$ where $\mathrm{lbl}<\mathrm{a}$. (2012)

Soln: Given integral ${ }_{0} \int^{2 \pi} \frac{\mathrm{~d} \theta}{a+\mathrm{b} \cos \theta}$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this) and $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes $0_{0}^{\int 2 \pi} \frac{\mathrm{~d} \theta}{a+\mathrm{b} \cos \theta}=\mathrm{c} \int \frac{\frac{d z}{i z}}{\left.a+\mathrm{b} \frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right)\right)}=\mathrm{c} \int \frac{\frac{d z}{i z}}{a+\mathrm{b}\left(\frac{z^{2}+1}{2 z}\right)}$

$$
\begin{gather*}
=c \int \frac{\frac{d z}{i z}}{\left(\frac{2 a z+b z^{2}+b}{2 z}\right)}=c \int \frac{d z}{\mathrm{iz}\left(\frac{2 a z+b z^{2}+b}{2 z}\right)} \\
=\frac{2}{i} \iint \frac{d z}{\mathrm{bz}^{2}+2 \mathrm{az}+\mathrm{b}}=\frac{2}{i} c \int f(z) d z------(\tag{2}
\end{gather*}
$$

Where $f(z)=\frac{1}{b z z^{2}+2 a z+b}=\frac{1}{b\left(z^{2}+2 \frac{a}{b} z+1\right)}=\frac{1}{b(z-\alpha)(z-\beta)}\left(D^{r}\right.$ is general eqn. so let the factors be in general) where $\alpha=\frac{-2 \frac{\mathrm{a}}{\mathrm{b}}+\sqrt{\left(2 \frac{\mathrm{a}}{\mathrm{b}}\right)^{2}-4}}{2}=\frac{-2 \frac{\mathrm{a}}{\mathrm{b}}+\sqrt{\left(2 \frac{\mathrm{a}}{\mathrm{b}}\right)^{2}-4}}{2}=\frac{-2 a+\sqrt{4 a^{2}-4 b^{2}}}{2 b}=\frac{-a+\sqrt{a^{2}-b^{2}}}{b}$

$$
\& \beta=\frac{-a-\sqrt{a^{2}-b^{2}}}{b}\left(b^{\prime} c z\right. \text { irrational roots occur in conjugate pairs) }
$$

[these roots are obtained by formula $\mathrm{x}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ method, for factors of this type we use the same procedure]
Clearly $z=\alpha$ and $z=\beta$ are simple poles of $f(z)$ for which $z=\alpha$ lies inside the circle $|z|=1$
$\left[\mathbf{b}^{\prime} \mathbf{c z}\right.$ in the example it is given that $\left.\mathbf{l b}|<a, \therefore| \frac{-a+\sqrt{a^{2}-b^{2}}}{b} \right\rvert\,<1$, i.e $|\alpha|<1$ i.e distance between
α and centre is <1, but $|\beta|>1$ as $\left|\frac{-a-\sqrt{a^{2}-b^{2}}}{b}\right|>1$]
\therefore calculate residue at $\mathrm{z}=\alpha$
If R_{1} is the residue of $f(z)$ at pole $z=\alpha$ (simple pole)
Then $R_{1}=\lim _{z \rightarrow \alpha}(z-\alpha) f(z)=\lim _{z \rightarrow \alpha}(z-\alpha) \frac{1}{b(z-\alpha)(z-\beta)}=\lim _{z \rightarrow \alpha} \frac{1}{b(z-\beta)}$
$=\frac{1}{\mathrm{~b}(\alpha-\beta)}=\frac{1}{\mathrm{~b}\left(\frac{2 \sqrt{a^{2}-b^{2}}}{b}\right)}=\frac{1}{2 \sqrt{a^{2}-b^{2}}}$
$\therefore \mathrm{R}_{1}=\frac{1}{2 \sqrt{a^{2}-b^{2}}}$
By C.R. Thm we have $c \int f(z) d z=2 \pi \mathrm{I} \mathrm{R}_{1}=2 \pi \mathrm{i} \frac{1}{2 \sqrt{a^{2}-b^{2}}}=\frac{\pi i}{\sqrt{a^{2}-b^{2}}}$
Substitute (3) in (2) then given integral $0_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{a+b \cos \theta}=\frac{2}{i} c \int f(z) d z=\frac{2}{i}\left(\frac{\pi i}{\sqrt{a^{2}-b^{2}}}\right)=$

$$
=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

Hence ${ }_{0} \int^{2 \pi} \frac{d \theta}{a+b \cos \theta}=\frac{2 \pi}{\sqrt{\boldsymbol{a}^{2}-b^{2}}}$ (answer should be in terms of real no. as integral is real)
[In first example if we put $a=5, b=4$, we get answer of ${ }^{2 \pi} \frac{d \theta}{5+4 \cos \theta}=\frac{2 \pi}{\sqrt{5^{2}-4^{2}}}=\frac{2 \pi}{3}$ which is true]
3. Using contour integration prove that $0 \int \pi d \theta /(a+\cos \theta)=\pi / \sqrt{ } a^{2}-1$ where $a>1$.

Soln: Given integral $0_{0} \int^{2 \pi} \frac{d \theta}{a+\cos \theta}$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this) and $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{a+\cos \theta}=\mathrm{c} \int \frac{\frac{d z}{i z}}{\left.a+\frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right)\right)}=\mathrm{c} \int \frac{\frac{d z}{i z}}{a+\left(\frac{z^{2}+1}{2 z}\right)}$

$$
=\mathrm{c} \int \frac{\frac{d z}{i z}}{\left(\frac{2 a z+z^{2}+1}{2 z}\right)}=\mathrm{c} \int \frac{d z}{\mathrm{iz}\left(\frac{a z+z^{2}+1}{2 z}\right)}
$$

$$
\begin{equation*}
=\frac{2}{i} c \int \frac{d z}{z^{2}+2 a z+1}=\frac{2}{i} c \int f(z) d z \tag{2}
\end{equation*}
$$

Where $f(z)=\frac{1}{z^{2}+2 a z+1}=\frac{1}{\left(z^{2}+2 a z+1\right)}=\frac{1}{(z-\alpha)(z-\beta)}$ (D^{r} is general eqn. so let the factors be in general) where $\alpha=\frac{-2 a+\sqrt{(2 a)^{2}-4}}{2}=\frac{-2 a+\sqrt{(2 a)^{2}-4}}{2}=\frac{-2 a+\sqrt{4 a^{2}-4}}{2}=-a+\sqrt{a^{2}-1}$

$$
\& \beta=-a-\sqrt{a^{2}-1} \text { (} b^{\prime} c z \text { irrational roots occur in conjugate pairs) }
$$

[these roots are obtained by formula $\mathrm{x}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ method, for factors of this type we use the same procedure]
Clearly $z=\alpha$ and $z=\beta$ are simple poles of $f(z)$ for which $z=\alpha$ lies inside the circle $|z|=1$ [$b^{\prime} c z$ in the example it is given that $1<a, \therefore\left|\frac{-a+\sqrt{a^{2}-1}}{1}\right|<1$, i.e $|\alpha|<1$ i.e distance between α and centre is <1, but $|\beta|>1$ as $\left|\frac{-a-\sqrt{a^{2}-1}}{1}\right|>1$]
\therefore calculate residue at $\mathrm{z}=\alpha$
If R_{1} is the residue of $f(z)$ at pole $z=\alpha$ (simple pole)
Then $R_{1}=\lim _{z \rightarrow \alpha}(z-\alpha) f(z)=\lim _{z \rightarrow \alpha}(z-\alpha) \frac{1}{(z-\alpha)(z-\beta)}=\lim _{z \rightarrow \alpha} \frac{1}{(z-\beta)}$
$=\frac{1}{(\alpha-\beta)}=\frac{1}{2 \sqrt{a^{2}-1}}$
$\therefore \mathrm{R}_{1}=\frac{1}{2 \sqrt{a^{2}-1}}$
By C.R. Thm we have $c \int f(z) d z=2 \pi \mathrm{I} \mathrm{R}_{1}=2 \pi \mathrm{i} \frac{1}{2 \sqrt{a^{2}-1}}=\frac{\pi i}{\sqrt{a^{2}-1}}$
Substitute (3) in (2) then given integral $0 \int^{2 \pi \pi} \frac{d \theta}{a+\cos \theta}=\frac{2}{i} c \int f(z) d z=\frac{2}{i}\left(\frac{\pi i}{\sqrt{a^{2}-1}}\right)$

$$
=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

Hence $0_{0} \int^{2 \pi} \frac{d \theta}{a+\cos \theta}=\frac{2 \pi}{\sqrt{a^{2}-1}}$
[Same as example (2), in the place of b we have to put $b=1$]
4. Using contour integration prove that ${ }_{0} \int^{2 \pi} d \theta /(1+a \cos \theta)=2 \pi / \sqrt{ } 1-a^{2}$ where lal<1.
5. Using contour integration prove that ${ }_{0} \int^{2 \pi} d \theta /(2+\cos \theta)=2 \pi / \sqrt{3} \quad(2013,2015)$ HOME work (same as above examples, only values a and b are different)
6. Evaluate ${ }_{0} \int^{2 \pi} d \theta /(a+b \sin \theta)$ by contour integration where lal <1

Soln: Given integral $0_{0} 0^{2 \pi} \frac{d \theta}{a+b \sin \theta}$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this) and $\sin \theta=\frac{1}{2 i}\left(\mathrm{z}-\frac{1}{z}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes $0_{0} \int^{2 \pi} \frac{\mathrm{~d} \theta}{a+\mathrm{b} \sin \theta}=\mathrm{c} \int \frac{\frac{d z}{i z}}{\left.a+\mathrm{b} \frac{1}{2 i}\left(\mathrm{z}-\frac{1}{z}\right)\right)}=\mathrm{c} \int \frac{\frac{d z}{i z}}{a+\mathrm{b}\left(\frac{z^{2}-1}{2 i z}\right)}$

$$
\begin{align*}
& =c \int \frac{\frac{d z}{i z}}{\left(\frac{2 a i z+b z^{2}-b}{2 i z}\right)}=c \int \frac{d z}{\mathrm{iz}\left(\frac{2 a i z+b z^{2}-b}{i 2 z}\right)} \\
& =2 c \int \frac{d z}{\mathrm{bz}^{2}+2 \mathrm{aiz}-\mathrm{b}}=2 \mathrm{c} \int f(z) d z \tag{2}
\end{align*}
$$

Where $f(z)=\frac{1}{b z^{2}+2 a i z-b}=\frac{1}{b\left(z^{2}+2 \frac{a i}{b} z-1\right)}=\frac{1}{b(z-\alpha)(z-\beta)}\left(D^{r}\right.$ is general eqn. so let the factors be in general) where $\alpha=\frac{-2 \frac{\mathrm{ai}}{\mathrm{b}}+\sqrt{\left(2 \frac{\mathrm{ai}}{\mathrm{b}}\right)^{2}+4}}{2}=\frac{-2 \frac{\mathrm{a}}{\mathrm{b}}+\sqrt{\left(2 \frac{\mathrm{ai}}{\mathrm{b}}\right)^{2}+4}}{2}=\frac{-2 i a+\sqrt{4(a i)^{2}+4 b^{2}}}{2 b}=\frac{-2 i a+2 i \sqrt{a^{2}-b^{2}}}{2 b}$

$$
\begin{aligned}
& =\mathrm{i} \frac{-a+\sqrt{a^{2}-b^{2}}}{b}\left(\mathrm{~b}^{\prime} c z\right. \text { irrational roots occur in conjugate pairs) } \\
\& \beta & =\mathrm{i} \frac{-a-\sqrt{a^{2}-b^{2}}}{b}
\end{aligned}
$$

[these roots are obtained by formula $\mathrm{x}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ method, for factors of this type we use the same procedure]
Clearly $z=\alpha$ and $z=\beta$ are simple poles of $f(z)$ for which $z=\alpha$ lies inside the circle $|z|=1$
[$b^{\prime} c z$ in the example it is given that $|b|<a, \therefore\left|\frac{-a+\sqrt{a^{2}-b^{2}}}{b}\right|<1$, i.e $|\alpha|<1$ i.e distance between α and centre is <1, but $|\beta|>1$ as $\left|\frac{-a-\sqrt{a^{2}-b^{2}}}{b}\right|>1$ and lil=1]
\therefore calculate residue at $\mathrm{z}=\alpha$
If R_{1} is the residue of $f(z)$ at pole $z=\alpha$ (simple pole)
Then $R_{1}=\lim _{z \rightarrow \alpha}(z-\alpha) f(z)=\lim _{z \rightarrow \alpha}(z-\alpha) \frac{1}{b(z-\alpha)(z-\beta)}=\lim _{z \rightarrow \alpha} \frac{1}{b(z-\beta)}$ $=\frac{1}{\mathrm{~b}(\alpha-\beta)}=\frac{1}{\mathrm{~b}\left(\frac{2 i \sqrt{a^{2}-b^{2}}}{b}\right)}=\frac{1}{2 i \sqrt{a^{2}-b^{2}}}$
$\therefore \mathrm{R}_{1}=\frac{1}{2 i \sqrt{a^{2}-b^{2}}}$
By C.R. Thm we have c! $f(z) d z=2 \pi \mathrm{I} \mathrm{R}_{1}=2 \pi i \frac{1}{2 i \sqrt{a^{2}-b^{2}}}=\frac{\pi}{\sqrt{a^{2}-b^{2}}}------\quad$ (3)
Substitute (3) in (2) then given integral $0 \int \frac{2 \pi}{a+b \sin \theta}=2 \mathrm{c} \int f(z) d z=2\left(\frac{\pi}{\sqrt{a^{2}-b^{2}}}\right)=$

$$
=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

Hence ${ }_{0} \int^{2 \pi} \frac{d \theta}{\boldsymbol{a}+\mathrm{b} \sin \theta}=\frac{2 \pi}{\sqrt{\boldsymbol{a}^{2}-\boldsymbol{b}^{2}}}$ (answer should be in terms of real no. as integral is real)
7. Evaluate ${ }_{0} \int 2 \pi \frac{d \theta}{\frac{5}{4}+\sin \theta} \quad$ or $\int 2 \pi \frac{4 d \theta}{5+4 \sin \theta}$
(2009)

Soln: In above example put $\mathbf{a}=\frac{5}{4}, \mathbf{b}=1$, we get $0 \int \frac{d \theta}{\frac{5}{4}+\sin \theta}=\frac{2 \pi}{\sqrt{\left(\frac{5}{4}\right)^{2}-1^{2}}}=\frac{2 \pi}{\sqrt{\frac{9}{16}}}=\frac{8 \pi}{3}$
Try it as home work
8. Using contour integration prove that $0 \int^{2 \pi}[\cos 2 \theta /(5+4 \cos \theta)] d \theta=\pi / 6$.

Soln: In this example N^{r} is not constant it is a function of $\cos \theta$, to solve example of this type starting procedure is different
We have $\mathrm{e}^{2 i \theta}=\cos 2 \theta+\mathrm{i} \sin 2 \theta$

$$
\begin{align*}
& \therefore \cos 2 \theta=\text { Real part of } \mathrm{e}^{2 i \theta} \\
& \therefore \frac{\cos 2 \theta}{5+4 \sin \theta}=\text { R.P of } \frac{\mathrm{e}^{2 i \theta}}{5+4 \sin \theta} \tag{1}
\end{align*}
$$

\therefore Given integral $\int_{0}\left[2 \pi \frac{\cos 2 \theta \mathrm{~d} \theta}{5+4 \cos \theta)}=\right.$ R. P of $0 \int^{2 \pi} \frac{\mathrm{e}^{2 i \theta} \mathrm{~d} \theta}{5+4 \cos \theta)}=$ R. P of $0_{0}\left[2 \pi \frac{\left(e^{i \theta}\right)^{2} \mathrm{~d} \theta}{5+4 \cos \theta)}\right.$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this)
And $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes $0_{0} \int^{2 \pi} \frac{\cos 2 \theta d \theta}{5+4 \cos \theta)}=$ R. P of $\int_{0} \int \frac{\left(e^{i \theta}\right)^{2} d \theta}{5+4 \cos \theta}=$ R. P of $\mathrm{c} \int \frac{z^{2} \frac{d z}{i z}}{\left(5+4 \frac{1}{2}\left(z+\frac{1}{z}\right)\right)}$
$=$ R. P of $c \int \frac{z^{2} \frac{d z}{i z}}{5+2\left(\frac{z^{2}+1}{z}\right)}$ (same as example $0 \int^{2 \pi} \frac{d \theta}{5+4 \cos \theta)}$ but only change is in N^{r}, extra term z^{2})
$=$ R. P of $c \int \frac{z^{2} \frac{d z}{i z}}{\left(\frac{5 z+2 z^{2}+2}{z}\right)}=$ R. P of $c \int \frac{z^{2} d z}{i z\left(\frac{5 z+2 z^{2}+2}{z}\right)}=$ R. P of $\frac{1}{i} c \int \frac{z^{2} d z}{2 z^{2}+5 z+2}=\frac{1}{i} c \int f(z) d z$
Where $f(z)=\frac{z^{2}}{2 z^{2}+5 z+2}=\frac{z^{2}}{(2 z+1)(z+2)}=\frac{z^{2}}{2\left(z+\frac{1}{2}\right)(z+2)}$ (D^{r} is having linear factors)
Clearly $z=-\frac{1}{2}$ and $z=-2$ are simple poles of $f(z)$ for which $z=-\frac{1}{2}$ lies inside the circle $|z|=1$
\therefore calculate residue at $\mathrm{z}=-\frac{1}{2}$
If R_{1} is the residue of $f(z)$ at pole $z=-\frac{1}{2}$ (simple pole)
Then $R_{1}=\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) f(z)=\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) \frac{z^{2}}{2\left(z+\frac{1}{2}\right)(z+2)}=\lim _{z \rightarrow-\frac{1}{2}} \frac{z^{2}}{2(z+2)}$

$$
=\frac{\frac{1}{4}}{2\left(-\frac{1}{2}+2\right)}=\frac{1}{8\left(\frac{3}{2}\right)}=\frac{1}{12}
$$

$\therefore \mathrm{R}_{1}=\frac{1}{12}$
By C.R.of hm we have $c \int f(z) d z=2 \pi \mathrm{I} \mathrm{R}_{1}=2 \pi \mathrm{i}\left(\frac{\mathbf{1}}{\mathbf{1 2}}\right)=\frac{\pi \mathrm{i}}{\mathbf{6}}$
Substitute (3) in (2) then given integral $0 \int 2 \pi \frac{\cos 2 \theta \mathrm{~d} \theta}{5+4 \cos \theta}=$ R. P. of $\frac{1}{i} c \int f(z) d z=$ R. P.of $\frac{1}{i}\left(\frac{\pi \mathrm{i}}{6}\right)$

Hence $0_{0} \int^{2 \pi} \frac{\cos 2 \theta d \theta}{5+4 \cos \theta}=\frac{\pi}{6}$ (answer should be in terms of real no. as integral is real)
9. Prove that ${ }_{0} \int^{\pi}\left[\frac{1+2 \cos \theta}{5+4 \sin \theta}\right] d \theta=0$

Soln: In this example N^{r} is not constant it is a function of $\cos \theta$, to solve example of this type starting procedure is different

We have $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta \quad \therefore 1+2 \mathrm{e}^{\mathrm{i} \theta}=(1+2 \cos \theta)+\mathrm{i} \sin \theta \quad \therefore 1+2 \cos \theta=\mathrm{R} . \mathrm{P}$ of $\left(1+2 \mathrm{e}^{\mathrm{i} \theta}\right)$
$\therefore \frac{1+2 \cos \theta}{5+4 \sin \theta}=$ R.P of $\frac{1+2 \mathrm{e}^{\mathrm{i} \theta}}{5+4 \sin \theta}$
\therefore Given integral $0_{0} \int^{2 \pi} \frac{1+2 \cos \theta \mathrm{~d} \theta}{5+4 \cos \theta)}=$ R. P of of $\int^{2 \pi} \frac{1+2 \mathrm{e}^{\mathrm{i} \theta} \mathrm{d} \theta}{5+4 \cos \theta)}$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ (for all examples it is same, so we remember this)
And $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right), \mathrm{C}$ is $|\mathrm{z}|=1$
Then integral (1) becomes ${ }_{0} \int^{2 \pi} \frac{1+2 \cos \theta d \theta}{5+4 \cos \theta)}=$ R. P of $0_{0} \int^{2 \pi} \frac{1+2 e^{i \theta} d \theta}{5+4 \cos \theta}=$ R. P of $\mathrm{c} \int \frac{(1+2 z) \frac{d z}{i z}}{\left(5+4 \frac{1}{2}\left(\mathrm{z}+\frac{1}{z}\right)\right)}$
$=$ R. P of $\mathrm{c} \int \frac{(1+2 z) \frac{d z}{i z}}{5+2\left(\frac{z^{2}+1}{z}\right)}$
$=$ R. P of $c \int \frac{(1+2 z) \frac{d z}{i z}}{\left(\frac{5 z+2 z^{2}+2}{z}\right)}=$ R. P of $c \int \frac{(1+2 z) d z}{i z\left(\frac{5 z+2 z^{2}+2}{z}\right)}=$ R. P of $\frac{1}{i} c \int \frac{(1+2 z) d z}{2 z^{2}+5 z+2}$

$$
\begin{equation*}
=\text { R. } \mathrm{P} \text { of } \frac{1}{i} c \int f(z) d z \tag{2}
\end{equation*}
$$

Where $f(z)=\frac{(1+2 z)}{2 z^{2}+5 z+2}=\frac{(1+2 z)}{(2 z+1)(z+2)}=\frac{1}{(z+2)}$
Clearly $z=-2$ are simple poles of $f(z)$ for which lies outside the circle $|z|=1$
\therefore By Cauchy's Thm $\int f(z) d z=0$
From (2) given integral is of $\int^{2 \pi} \frac{1+2 \cos \theta \mathrm{~d} \theta}{5+4 \cos \theta}=$ R. P.of $\frac{1}{i} c \int f(z) d z=$ R. P.of $\frac{1}{i}(0)=0$
Hence ${ }_{0}{ }^{2 \pi} \frac{1+2 \cos \theta d \theta}{5+4 \cos \theta}=0$
10.Using contour integration evaluate $0 \int^{2 \pi}[\cos 3 \theta /(5+4 \cos \theta)] d \theta$ (2017)

HOME work
10. Prove that ${ }_{0} \int^{2 \pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=2 \pi / n$! (2015)

Soln: This example is again little different
Let $\alpha=(\sin \theta-\mathrm{n} \theta)$ then $\mathrm{e}^{\cos \theta} \cos (\sin \theta-\mathrm{n} \theta)=\mathrm{e}^{\cos \theta} \cos \alpha=\mathrm{R}$. P of $\mathrm{e}^{\cos \theta}(\cos \alpha+\mathrm{i} \sin \alpha)$
$=$ R. P of $\left(\mathrm{e}^{\cos \theta} e^{i \alpha}\right)=$ R. P of $\left(\mathrm{e}^{\cos \theta} e^{i(\sin \theta-n \theta)}\right)=$ R. P of $\left(\mathrm{e}^{\cos \theta} e^{i \sin \theta-i n \theta}\right)$
$=$ R. P of $\left(e^{\cos \theta+i \sin \theta} e^{-i n \theta}\right)=$ R. P of $e^{\left(e^{i \theta}\right)} e^{-i n \theta}=$ R. P of $e^{\left(e^{i \theta}\right)}\left(e^{i \theta}\right)^{-n}$
Given Integral is $0_{0} \int^{2 \pi} e^{\cos \theta} \cos (\sin \theta-n \theta) \mathrm{d} \theta=$ R. P of $0^{2 \pi} e^{\left(e^{i \theta}\right)}\left(e^{i \theta}\right)^{-n} \mathrm{~d} \theta--\cdots----(1)$
Put $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{z}$ so that $\mathrm{d} \theta=\frac{d z}{i z}$ then integral (1) becomes
${ }_{0} \int^{2 \pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=$ R. P of ${ }_{0} \int^{2 \pi} e^{\left(e^{i \theta}\right)}\left(e^{i \theta}\right)^{-n} d \theta=$ R.P. of ${ }_{\mathrm{c}} \int e^{Z} Z^{-n} \frac{d z}{i z}$ where

$$
\begin{align*}
=\text { R.P. of } \frac{1}{i} \mathrm{c} \int e^{z} \frac{d z}{z^{n+1}} & =\text { R.P. of } \frac{1}{i} \int \frac{e^{z}}{z^{n+1}} d z \quad \text { (we have done example of this type) } \\
& =\text { R.P. of } \frac{1}{i} c \int f(z) d z \tag{2}
\end{align*}
$$

Where $f(z)=\frac{e^{z}}{z^{n+1}} \quad$ Clearly $z=0$ is a pole of order $(n+1)$ which is inside the circle $|z|=1$.
If R_{1} is residue of $f(z)$ at $z=0$ then $R_{1}=\frac{1}{(n+1-1)!} \lim _{z \rightarrow 0} \frac{d^{n}}{d z^{n}}(z-0)^{n} f(z)$

$$
\begin{align*}
& =\frac{1}{n!} \lim _{z \rightarrow 0} \frac{d^{n}}{d z^{n}}(\mathrm{z})^{\mathrm{n}} \frac{e^{z}}{(z)^{n}} \\
& =\frac{1}{n!} \lim _{z \rightarrow \pi} \frac{d^{n}}{d z^{n}} \boldsymbol{e}^{\boldsymbol{z}}=\frac{1}{n!} \lim \boldsymbol{e}^{\boldsymbol{z}}=\frac{1}{n!0} \\
& =1 \tag{3}
\end{align*}
$$

\therefore By C. R. Thm $\mathrm{c} \int f(z) d z=\int \frac{e^{z}}{z^{n+1}} \quad \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}\right)=2 \pi \mathrm{i}\left(\frac{1}{n!}\right)=\frac{2 \pi \mathrm{i}}{n!}$
Then from (2) and (3) given integral becomes

$$
\begin{aligned}
& 0_{0}^{2 \pi} \mathrm{e}^{\cos \theta} \cos (\sin \theta-\mathrm{n} \theta) \mathrm{d} \theta=\mathrm{R} . \mathrm{P} \text { of } \frac{1}{i} \mathrm{c} \int f(z) d z=\text { R. P of } \frac{1}{i}\left(\frac{2 \pi \mathrm{i}}{n!}\right)=\text { R. P of } \frac{2 \pi}{n!} \\
&=\frac{2 \pi}{n!} \quad\left(\mathrm{b}^{\prime} c z\right. \text { real part of real is itself) } \\
& \therefore \quad \int^{2} 2 \pi \mathrm{e}^{\cos \theta} \cos (\sin \theta-\mathrm{n} \theta) \mathrm{d} \theta=\frac{2 \pi}{n!}
\end{aligned}
$$

This complets 2nd type of examples

III. Evaluation of real integral of the type $\int_{-\infty}^{\infty} f(x) d x$ provided poles are not

 real, i.e they are only in terms imaginary)for example $\int_{-\infty}^{\infty} \frac{e^{x}}{(x+2)^{2}} d x$ cannot be solved as, pole is $x=-2$ is real but example $\int_{-\infty}^{\infty} \frac{x}{x^{2}+4} d x$ can be solved as poles are $x= \pm 2 i$, which are imaginary
Similarly $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+2 x+3} d x$ can be solved as poles are $\mathrm{x}=-2 \pm i 2 \sqrt{2}$, which are imaginary]
To solve examples of these types we need one lemma, called Jordan's Lemma Statement for Jordan's Lemma(Important for $\mathbf{2}$ marks): If $\mathrm{f}(\mathrm{z}) \rightarrow \mathbf{0}$ uniformly as IzI $\rightarrow \infty$ (i.e region tends to hole plane) then $\lim _{R \rightarrow \infty} c_{R} \int e^{i m z} f(z) d z=0$ where C_{R} is denotes Semi circle $|z|=R, I(z) \mid>0$
Procedure to solve example of this type :
Given integral $\int_{-\infty}^{\infty} f(x) d x \quad$ steps are as follows
(i) Consider the integral as $\int \boldsymbol{f}(\mathbf{z}) \boldsymbol{d z}$, just replace x by z and write the integral where C is closed contour consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

> Closed curve C contains two parts,C_{R} Upper half of circle $|z|=R$ and real line from $-R$ to R.
> $\therefore C=C_{R}+$ line from $-R$ to R
(ii) Next for $f(z)$, find poles and calculate residues at poles which lie inside C, let them be $\mathbf{R}_{1}, \mathrm{R}_{2}-------$
(iii) By C.R. Theorem we have $\int f(z) d z=2 \pi I$ (sum of residues) =let it be some value K i.e $\int f(z) d z=K$
i.e $c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=K$ (b'cz C consisting two parts C_{R} and real line from $-R$ to R)
(iv) Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\quad \lim _{R \rightarrow \infty} K \\
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=K \quad\left(b^{\prime} c z\right. \text { limit of constant is constant) } \\
& \quad \therefore \quad \int_{-\infty}^{\infty} f(x) d x=K-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \quad \text { and integral } c_{R} \int f(z) d z \text { in RHS }
\end{aligned}
$$

can be evaluated by Jordans Lemma or by any other method so that in all the examples $\lim _{R \rightarrow \infty} c_{R} \int f(z) d z=0$

$$
\begin{aligned}
& \therefore \quad \int_{-\infty}^{\infty} f(x) d x=K-0 \\
& \text { i.e } \int_{-\infty}^{\infty} f(x) d x=K \text { and } \int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) d x=\frac{K}{2}
\end{aligned}
$$

NOTE: This procedure is same for all examples of above type.
Examples: .

1. Prove that $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}$ by contour integration (2015)

Soln: Given integral $0 \int_{0}^{\infty} \frac{d x}{1+x^{2}}$
Consider the integral ${ }_{c} \int f(z) d z={ }_{c} \int \frac{d z}{1+z^{2}}$, taken around the closed contour C consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{1}{1+z^{2}}=\frac{1}{(z+i)(z-i)}$
Clearly $Z=i$, $-i$ are simple poles of $f(z)$ for which $Z=i$ lies inside $C \quad($ where as $z=-i=(0,-1)$ lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=\mathrm{i}$
If R_{1} is the residue of $f(z)$ at $z=i$ then $R_{1}==\lim _{z \rightarrow i}(z-i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow i}(\mathrm{z}-\mathrm{i}) \frac{1}{(z+i)(z-i)} \\
& =\lim _{z \rightarrow i} \frac{1}{(z+i)}=\frac{1}{2 i}
\end{aligned}
$$

By C.R. Theorem we have $d f(z) d z=2 \pi \mathrm{i}\left(\mathrm{R}_{1}\right)$

$$
\begin{aligned}
& \text { i.e } \int f(z) d z=2 \pi \mathrm{i} \frac{1}{2 i} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\pi
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \pi \\
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\pi \quad \text { (b'cz limit of constant is constant) }
\end{aligned}
$$

$$
\therefore \quad \int_{-\infty}^{\infty} f(x) d x=\pi-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z
$$

i. $e \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \quad d x=\pi-\lim _{R \rightarrow \infty} c_{R} \int \frac{1}{1+z^{2}} d z$ \qquad
Consider $\left|c_{R} \int \frac{1}{1+z^{2}} d z\right| \leq c_{R} \int\left|\frac{1}{1+z^{2}}\right||d z|=c_{R} \int \frac{1}{\left|z^{2}+1\right|}|d z|$

$$
\begin{array}{ll}
\leq c_{R} \int \frac{1}{|z|^{2}-1}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{cz} \frac{1}{|a+b|} \leq \frac{1}{|a|-|b|}\right]} \\
=c_{R} \int \frac{1}{R^{2}-1}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{cz}[\mathrm{z}]=\mathrm{R}\right]} \\
=\frac{1}{R^{2}-1} c_{R} \int|d z| & \\
=\frac{1}{R^{2}-1} \text { length of the semi circle } \mathrm{C}_{\mathrm{R}} \\
=\frac{1}{R^{2}-1}(\pi \mathrm{R}) \rightarrow 0 \text { as } \mathrm{R} \rightarrow \infty
\end{array}
$$

Thus $\lim _{R \rightarrow \infty}\left|c_{R} \int \frac{1}{1+z^{2}} d z\right|=0$

$$
\Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{1}{1+z^{2}} d z=0
$$

From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \quad d x=\pi-0=\pi$
i. e $2 \int_{0}^{\infty} \frac{1}{1+x^{2}} \quad d x=\pi \quad\left[\mathrm{b}^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{1}{1+x^{2}} d x\right.$ as $f(x)$ is even fuction $]$
$\Rightarrow \int_{0}^{\infty} \frac{1}{1+x^{2}} \quad d x=\frac{\pi}{2}$
$\therefore \int_{0}^{\infty} \frac{1}{1+x^{2}} \quad d x=\frac{\pi}{2}$
Note: Above example can be solved even by using PUC integration, if the power of D^{r} increases we cannot evaluate by our PUC integration, so in such cases contour integration is applicable.
2. Prove that $\quad-\infty \int^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{4}$ by contour integration. $(2016,2017)$ [in this example power of
D^{r} is 2]
Proof: Given integral $0 \int^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}$
Consider the integral $\int f(z) d z=\int \frac{d z}{\left(1+z^{2}\right)^{2}}$, taken around the closed contour C consisting of upper half large circle C_{R} : $|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{1}{\left(1+z^{2}\right)^{2}}=\frac{1}{((z+i)(z-i))^{2}}=\frac{1}{(z+i)^{2}(z-i)^{2}}$
Clearly $Z=i,-i$ are poles of $f(z)$ of order 2 for which $Z=i$ lies inside $C \quad$ (where as $z=-i=(0,-1)$ lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at pole $z=i$ (order is 2)
If R_{1} is the residue of $f(z)$ at $z=i$ then $R_{1}=\frac{1}{(2-1)!} \lim _{z \rightarrow i} \frac{d}{d z}(z-i)^{2} f(z)$

$$
\begin{gathered}
=\lim _{z \rightarrow i} \frac{d}{d z}(\mathrm{z}-\mathrm{i})^{2} \frac{1}{(z+i)^{2}(z-i)^{2}} \\
=\lim _{z \rightarrow i} \frac{d}{d z} \frac{1}{(z+i)^{2}}=\lim _{z \rightarrow i} \frac{-2}{(z+i)^{3}}=\frac{-2}{(2 i)^{3}}=\frac{-2}{-8 i}=\frac{1}{4 i}
\end{gathered}
$$

By C.R. Theorem we have $\int f(z) d z=2 \pi i\left(R_{1}\right)$

$$
\begin{aligned}
& \text { i.e } \int f(z) d z=2 \pi \mathrm{i} \frac{1}{4 i} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{\pi}{2}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\quad \lim _{R \rightarrow \infty} \frac{\pi}{2} \\
& \quad \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{2} \quad \text { (b'cz limit of constant is constant) } \\
& \quad \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{2}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{1}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2}-\lim _{R \rightarrow \infty} c_{R} \int \frac{d x}{\left(1+z^{2}\right)^{2}} d z$

Consider $\left|c_{R} \int \frac{1}{\left(1+z^{2}\right)^{2}} d z\right| \leq c_{R} \int\left|\frac{1}{\left(1+z^{2}\right)^{2}}\right||d z|=c_{R} \int \frac{1}{\left|\left(z^{2}+1\right)^{2}\right|}|d z|$

$$
\begin{array}{ll}
\leq c_{R} \int \frac{1}{\left(|z|^{2}-1\right)^{2}}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{Cz} \frac{1}{|a+b|} \leq \frac{1}{|a|-|b|}\right]} \\
=c_{R} \int \frac{1}{\left(R^{2}-1\right)^{2}}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{Cz}[\mathrm{z}]=\mathrm{R}\right]} \\
=\frac{1}{\left(R^{2}-1\right)^{2}} c_{R} \int|d z| & \\
=\frac{1}{\left(R^{2}-1\right)^{2}} \text { length of the semi circle } \mathrm{C}_{\mathrm{R}} \\
=\frac{1}{\left(R^{2}-1\right)^{2}}(\pi \mathrm{R}) \rightarrow 0 \text { as } \mathrm{R} \rightarrow \infty &
\end{array}
$$

Thus $\lim _{R \rightarrow \infty}\left|c_{R} \int \frac{1}{\left(1+z^{2}\right)^{2}} d z\right|=0$
$\Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{1}{\left(1+z^{2}\right)^{2}} d z=0$
From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2}-0$
i. e $2 \int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2} \quad \Rightarrow \int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{4}$

$\therefore \int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{4}$

Note: In example (2) power of D^{r} is $2, \therefore$ poles r of order 2 and hence according to that we have to calculate residues and proceed.
3. Prove by contour integration that $0^{\infty} \frac{1}{\left(1+x^{2}\right)^{3}} \quad d x=3 \pi / 8$.

Soln: HOME work
Solve as above example, poles w get as order 3.
4. Evaluate by contour integration that $\int_{0} \infty \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}$

Soln: Given integral $0 \int^{\infty} \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}$
Consider the integral $\int f(z) d z={ }_{c} \int \frac{z^{2} d z}{\left(1+z^{2}\right)^{2}}$, taken around the closed contour C consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{z^{2}}{\left(1+z^{2}\right)^{2}}=\frac{z^{2}}{((z+i)(z-i))^{2}}=\frac{z^{2}}{(z+i)^{2}(z-i)^{2}}$
Clearly $Z=i$, $-i$ are poles of $f(z)$ of order 2 for which $Z=i$ lies inside $C \quad($ where as $z=-i=(0,-1)$ lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at pole $\mathrm{z}=\mathrm{i}$ (order is 2)
If R_{1} is the residue of $f(z)$ at $z=i$ then $R_{2}===\frac{1}{(2-1)!} \lim _{z \rightarrow i} \frac{d}{d z}(z-i)^{2} f(z)$

$$
\begin{gathered}
=\lim _{z \rightarrow i} \frac{d}{d z}(\mathrm{z}-\mathrm{i})^{2} \frac{\mathrm{z}^{2}}{(z+i)^{2}(z-i)^{2}} \\
=\lim _{z \rightarrow i} \frac{d}{d z} \frac{\mathrm{z}^{2}}{(z+i)^{2}}=\lim _{z \rightarrow i} \frac{2 i z}{(z+i)^{3}}=\frac{-2}{(2 i)^{3}}=\frac{-2}{-8 i}=\frac{1}{4 i}
\end{gathered}
$$

By C.R. Theorem we have $\int f(z) d z=2 \pi i\left(R_{1}\right)$

$$
\begin{aligned}
& \text { i.e } \int f(z) d z=2 \pi \mathrm{i} \frac{1}{4 i} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{\pi}{2}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\quad \lim _{R \rightarrow \infty} \frac{\pi}{2} \\
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{2} \quad \text { (b'cz limit of constant is constant) } \\
& \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{2}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{1}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2}-\lim _{R \rightarrow \infty} c_{R} \int \frac{z^{2} d x}{\left(1+z^{2}\right)^{2}} d z$

Consider $\left|\boldsymbol{c}_{R} \int \frac{\mathrm{z}^{2}}{\left(1+\mathrm{z}^{2}\right)^{2}} d \boldsymbol{d z}\right| \leq \boldsymbol{c}_{R} \int\left|\frac{\mathrm{z}^{2}}{\left(1+\mathrm{z}^{2}\right)^{2}}\right||d z|=\boldsymbol{c}_{R} \int \frac{\left|\mathrm{z}^{2}\right|}{\left|\left(\mathrm{z}^{2}+1\right)^{2}\right|}|d z|=\boldsymbol{c}_{R} \int \frac{|\mathrm{z}|^{2}}{\left|\left(\mathrm{z}^{2}+1\right)^{2}\right|}|d z|$

$$
\leq c_{R} \int \frac{|z|^{2}}{\left(|z|^{2}-1\right)^{2}}|d z| \quad\left[\mathrm{b}^{\prime} \mathrm{cz} \frac{1}{|a+\boldsymbol{b}|} \leq \frac{1}{|a|-|\boldsymbol{b}|}\right]
$$

$=c_{R} \int \frac{R^{2}}{\left(\boldsymbol{R}^{2}-1\right)^{2}}|d z|$
[$\mathrm{b}^{\prime} \mathrm{cz}$ [z] $=\mathrm{R}$]
$=\frac{R^{2}}{\left(R^{2}-1\right)^{2}} c_{R} \int \quad|d z|$
$=\frac{R^{2}}{\left(R^{2}-1\right)^{2}}$ length of the semi circle C_{R}
$=\frac{R^{2}}{\left(R^{2}-1\right)^{2}}(\pi R) \rightarrow 0$ as $R \rightarrow \infty \quad\left(b^{\prime} c z\right.$ degree of $N^{r}<$ degree of $\left.D^{r}\right]$

$$
\begin{aligned}
& \text { Thus } \lim _{R \rightarrow \infty}\left|c_{R} \int \frac{\mathrm{z}^{2}}{\left(1+\mathrm{z}^{2}\right)^{2}} d z\right|=0 \\
& \Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{\mathrm{z}^{2}}{\left(1+\mathrm{z}^{2}\right)^{2}} d z=0
\end{aligned}
$$

From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2}-0$ i. e $2 \int_{0}^{\infty} \frac{\mathrm{x}^{2}}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{2} \quad \Rightarrow \int_{0}^{\infty} \frac{\mathrm{x}^{2}}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{4}$

$\therefore \int_{0}^{\infty} \frac{\mathrm{x}^{2}}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{4}$

4. Prove by contour integration that $-\infty \int^{\infty} \frac{\mathrm{x}^{2} d x}{\left(a^{2}+x^{2}\right)^{3}} \mathrm{dx}=\pi / 8 \mathrm{a}^{3}, \mathrm{a}>0$

Soln: Given integral $0 \int^{\infty} \frac{x^{2} d x}{\left(a^{2}+x^{2}\right)^{3}}$
Consider the integral $\int f(z) d z={ }_{c} \int \frac{z^{2} d z}{\left(a^{2}+z^{2}\right)^{3}}$, taken around the closed contour C consisting of upper half large circle C_{R} : $|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{z^{2}}{\left(a^{2}+z^{2}\right)^{3}}=\frac{z^{2}}{((z+a i)(z-a i))^{3}}=\frac{z^{2}}{(z+a i)^{3}(z-a i)^{3}}$
Clearly $Z=a i,-a i$ are poles of $f(z)$ of order 3 for which $Z=$ ai lies inside C (where as $z=-a i=(0,-a)$
($a>0$ given), lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at pole $\mathrm{z}=$ ai (order is 3)
If R_{1} is the residue of $f(z)$ at $z=$ ai then $R_{1}=\frac{1}{(3-1)!} \lim _{z \rightarrow a i} \frac{d^{2}}{d z^{2}}(z-a i)^{3} f(z)$

$$
\begin{aligned}
& \quad=\lim _{z \rightarrow a i} \frac{\mathrm{~d}^{2}}{d \mathrm{z}^{2}}(\mathrm{z}-\mathrm{ai})^{2} \frac{\mathrm{z}^{2}}{(z+a i)^{3}(z-a i)^{3}} \\
& =\frac{1}{2!} \lim _{z \rightarrow a i} \frac{\mathrm{~d}^{2}}{d \mathrm{z}^{2}} \frac{\mathrm{z}^{2}}{(z+a i)^{3}}=\frac{1}{2} \lim _{z \rightarrow a i} \frac{\mathrm{~d}}{\mathrm{dz}} \frac{2 i a z-\mathrm{z}^{2}}{(z+a i)^{4}} \\
& =\frac{1}{2} \lim _{z \rightarrow a i} \frac{2 \mathrm{z}^{2}-2 \mathrm{a}^{2}-8 \mathrm{iaz}}{(z+a i)^{5}}=\frac{1}{2} \frac{4 \mathrm{a}^{2}}{32 \mathrm{a}^{5} \mathrm{i}}=\frac{1}{16 \mathrm{a}^{3} \mathrm{i}}
\end{aligned}
$$

By C.R. Theorem we have ${ }_{c} \int f(z) d z=2 \pi i\left(R_{1}\right)$

$$
\begin{aligned}
& \text { i.e } \int f(z) d z=2 \pi \mathrm{i} \frac{1}{16 \mathrm{a}^{3} \mathrm{i}} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{\pi}{8 \mathrm{a}^{3}}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \frac{\pi}{8 \mathrm{a}^{3}}
$$

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{8 \mathrm{a}^{3}} \quad \text { (} b^{\prime} c z \text { limit of constant is constant) } \\
& \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{8 \mathrm{a}^{3}}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{1}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{\mathrm{x}^{2} d x}{\left(1+x^{2}\right)^{3}} \quad d x=\frac{\pi}{8 \mathrm{a}^{3}}-\lim _{R \rightarrow \infty} c_{R} \int \frac{z^{2} d x}{\left(1+z^{2}\right)^{3}} d z$

Consider $\left|c_{R} \int \frac{z^{2}}{\left(1+z^{2}\right)^{2}} d z\right| \leq c_{R} \int\left|\frac{z^{2}}{\left(1+z^{2}\right)^{3}}\right||d z|=c_{R} \int \frac{\left|z^{2}\right|}{\left|\left(z^{2}+1\right)^{3}\right|} \quad|d z|=c_{R} \int \frac{|z|^{2}}{\left|\left(z^{2}+1\right)^{3}\right|}|d z|$

$$
\begin{array}{ll}
\leq c_{R} \int \frac{|z|^{2}}{\left(|z|^{2}-1\right)^{3}}|d z| \quad\left[b^{\prime} c z \frac{1}{|a+b|} \leq \frac{1}{|a|-|b|}\right] \\
=c_{R} \int \frac{R^{2}}{\left(R^{2}-1\right)^{3}}|d z| \quad \quad\left[\mathrm{b}^{\prime} c z|z|=R\right] \\
=\frac{R^{2}}{\left(R^{2}-1\right)^{3}} c_{R} \int|d z| & \\
=\frac{R^{2}}{\left(R^{2}-1\right)^{3}} \text { length of the semi circle } \mathrm{C}_{\mathrm{R}} \\
\left.=\frac{R^{2}}{\left(R^{2}-1\right)^{3}}(\pi \mathrm{R}) \rightarrow 0 \text { as } \mathrm{R} \rightarrow \infty \quad \text { (b'cz degree of } \mathrm{N}^{\prime}<\text { degree of } \mathrm{D}^{\prime}\right]
\end{array}
$$

Thus $\lim _{R \rightarrow \infty}\left|c_{R} \int \frac{z^{2}}{\left(1+z^{2}\right)^{3}} d z\right|=0$
$\Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{z^{2}}{\left(1+z^{2}\right)^{3}} d z=0$
From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{\mathrm{x}^{2}}{\left(1+x^{2}\right)^{3}} \quad d x=\frac{\pi}{8 \mathrm{a}^{3}} \quad 0=\frac{\pi}{8 \mathrm{a}^{3}}$

$$
\therefore \int_{-\infty}^{\infty} \frac{\mathrm{x}^{2}}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi}{8 \mathrm{a}^{3}}
$$

5. Prove that $0_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{12} \quad$ by contour integration. $(2009,2018)$

Soln: Given integral $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$
Consider the integral $\int f(z) d z=\int \frac{d z}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$, taken around the closed contour C consisting of upper half large circle C_{R} : $|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}=\frac{1}{(z+i)(z-i)(z+2 i)(z-2 i)}$
Clearly $Z=i,-i, 2 i,-2 i$ are simple poles of $f(z)$ for which $Z=i$ and $2 i$ lies inside $C \quad($ where as $z=-i$ i.e $(0,-1)$ and $z=-2 i$ i.e $(0,-2)$ lies in lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=\mathrm{i}$ and 2 i
If R_{1} is the residue of $f(z)$ at $z=i$ then $R_{1}=\lim _{z \rightarrow i}(z-i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow i}(\mathrm{z}-\mathrm{i}) \frac{1}{(z+i)(z-i)(z+2 i)(z-2 i)} \\
& =\lim _{z \rightarrow i} \frac{1}{(z+i)(z+2 i)(z-2 i)}=\frac{1}{2 i(3)}
\end{aligned}
$$

$$
\mathrm{R}_{1}=\frac{\mathbf{1}}{\mathbf{6} \boldsymbol{i}}
$$

If R_{2} is the residue of $f(z)$ at $z=2 i$ then $R_{1}==\lim _{z \rightarrow 2 i}(z-2 i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow 2 i}(\mathrm{z}-2 \mathrm{i}) \frac{1}{(z+i)(z-i)(z+2 i)(z-2 i)} \\
& =\lim _{z \rightarrow 2 i} \frac{1}{(z+2 i)(z+i)(z-i)}=\frac{1}{4 i(-3)}=\frac{1}{-12 i}
\end{aligned}
$$

$$
\mathrm{R}_{2}=\frac{1}{-12 i}
$$

By C.R. Theorem we have $d f(z) d z=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

$$
\begin{aligned}
& \text { i.e }{ }_{c} \int f(z) d z=2 \pi \mathrm{i}\left(\frac{1}{6 i}+\frac{1}{-12 i}\right) \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{2 \pi \mathrm{i}}{12 i}=\frac{\pi}{6}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\quad \lim _{R \rightarrow \infty} \frac{\pi}{6} \\
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{6} \quad\left(b^{\prime} c z\right. \text { limit of constant is constant) } \\
& \quad \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{6}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{1}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \quad d x=\frac{\pi}{6}-\lim _{R \rightarrow \infty} c_{R} \int \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z$

$$
\begin{aligned}
\text { Consider } \left\lvert\, c_{R} \int \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}\right. & \left.d z\left|\leq c_{R} \int\right| \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}|\quad| d z\left|=c_{R} \int \frac{1}{\left|z^{2}+1\right|} \frac{1}{\left|z^{2}+4\right|}\right| d z \right\rvert\, \\
& \leq c_{R} \int \frac{1}{\left(|z|^{2}-1\right)\left(|z|^{2}-4\right)}|d z| \quad \quad\left[\mathrm{b}^{\prime} \mathrm{cz} \frac{1}{|a+b|} \leq \frac{1}{|a|-|b|}\right] \\
& =c_{R} \int \frac{1}{\left.\left(R^{2}-1\right) R^{2}-4\right)}|d z| \quad \quad\left[\mathrm{b}^{\prime} \mathrm{cz}[\mathrm{z}]=\mathrm{R}\right] \\
& =\frac{1}{\left.\left(R^{2}-1\right) R^{2}-4\right)} c_{R} \int \quad|d z| \\
& =\frac{1}{\left.\left(R^{2}-1\right) R^{2}-4\right)} \text { length of the semi circle } \mathrm{C}_{\mathrm{R}} \\
& =\frac{1}{\left.\left(R^{2}-1\right) R^{2}-4\right)}(\pi \mathrm{R}) \rightarrow 0 \text { as } \mathrm{R} \rightarrow \infty
\end{aligned}
$$

Thus $\lim _{R \rightarrow \infty}\left|c_{R} \int \frac{\mathbf{1}}{\left(\mathbf{z}^{2}+\mathbf{1}\right)\left(\mathbf{z}^{2}+\mathbf{4}\right)} d z\right|=0$
$\Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z=0$
From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \quad d x=\frac{\pi}{6}-0=\frac{\pi}{6}$
i. e $2 \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \quad d x=\frac{\pi}{6} \quad\left[b^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{1}{1+x^{2}} d x\right.$ as $f(x)$ is even fuction $]$
$\Rightarrow \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \quad d x=\frac{\pi}{12}$

$$
\therefore \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \quad d x=\frac{\pi}{12}
$$

6. Prove that $\quad 0 \int^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}=\frac{\pi}{200}$ by contour integration.

Soln: Given integral $0 \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}$
Consider the integral $\int f(z) d z=d \frac{z^{2} d z}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}}$, taken around the closed contour C consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}}=\frac{z^{2}}{(z+3 i)(z-3 i)(z-2 i)^{2}(z+2 i)^{2}}$
Clearly $Z=3 i,-3 i$ are simple poles and $z=2 i,-2 i$ are poles of order 2 of $f(z)$ for which $Z=i$ and $2 i$ lies inside C (where as $z=-3 i$ i.e $(0,-3)$ and $z=-2 i$ i.e ($0,-2$) lies in lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=3 \mathrm{i}$ and 2 i
If R_{1} is the residue of $f(z)$ at $z=3 i$ then $R_{1}=\lim _{z \rightarrow 3 i}(z-3 i) f(z) \quad\left(b^{\prime} c z z=3 i\right.$ is simple pole)

$$
\begin{aligned}
= & \lim _{z \rightarrow 3 i}(\mathrm{z}-3 \mathrm{i}) \frac{z^{2}}{(z+3 i)(z-3 i)\left(\mathrm{z}^{2}+4\right)^{2}} \\
& =\lim _{z \rightarrow 3 i} \frac{\mathrm{z}^{2}}{(z+3 i)\left(z^{2}+4\right)^{2}}=\frac{-9}{6 i(-5)^{2}} \\
\mathrm{R}_{1} & =\frac{-3}{50 i}
\end{aligned}
$$

If R_{2} is the residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=2 i$ then $\mathrm{R}_{2}=\frac{1}{(2-1)!} \lim _{z \rightarrow 2 i} \frac{d}{d z}(\mathrm{z}-2 i)^{2} \mathrm{f}(\mathrm{z})$

$$
\begin{aligned}
= & \lim _{z \rightarrow 2 i} \frac{d}{d z}(\mathrm{z}-2 i)^{2} \frac{z^{2}}{(z+3 i)(z-3 i)(z-2 i)^{2}(z+2 i)^{2}} \\
= & \lim _{z \rightarrow 2 i} \frac{d}{d z} \frac{\mathrm{z}^{2}}{(z+3 i)(z-3 i)(z+2 i)^{2}} \\
= & \lim _{z \rightarrow 2 i} \frac{d}{d z}\left[\frac{z^{2}}{\left(z^{2}+9\right)(z+2 i)^{2}}\right] \\
= & \lim _{z \rightarrow 2 i} \frac{4 i\left\{[5) 4-i\left(z^{2}+9\right)-z^{2}(z+2 i)\right]}{\left(z^{2}+9\right)^{2}(z+2 i)^{3}} \\
\mathrm{R}_{2} \quad & =\frac{4 i[(5)(4 i)-2 i(5)-(-4)(4 i)]}{(5)^{2}(4 i)^{3}}=\frac{4 i(26 i)}{(25)(-64 i)}= \\
& =\frac{-13}{-200 i}=\frac{13}{200 i}
\end{aligned}
$$

By C.R. Theorem we have $d f(z) d z=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

$$
\text { i.e }{ }_{c} \int f(z) d z=2 \pi \mathrm{i}\left(\frac{-3}{50 i}+\frac{13}{200 i}\right)=2 \pi \mathrm{i}\left(\frac{1}{200 i}\right)=\frac{\pi}{100}
$$

$$
\text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{\pi}{100}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \frac{\pi}{100} \\
& \quad \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{100} \quad \text { (b'cz limit of constant is constant) }
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{100}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{1}
\end{equation*}
$$

i. $e \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} \quad d x=\frac{\pi}{100}-\lim _{R \rightarrow \infty} c_{R} \int \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}}$
$d z$

Consider $\left|c_{R} \int \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}} \quad d z\right| \leq c_{R} \int\left|\frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}}\right||d z|=c_{R} \int \frac{|z|^{2}}{\left|z^{2}+9\right|} \frac{1}{\left|\left(z^{2}+4\right)\right|^{2}}|d z|$

$$
\begin{array}{ll}
\leq c_{R} \int \frac{|z|^{2}}{\left(|z|^{2}-9\right)\left(|z|^{2}-4\right)^{2}}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{Cz} \frac{1}{|a+b|} \leq \frac{1}{|a|-|b|}\right]} \\
=c_{R} \int \frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}}|d z| & {\left[\mathrm{b}^{\prime} \mathrm{Cz}|\mathrm{z}|=\mathrm{R}\right]} \\
=\frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}} c_{R} \int|d z| & \\
=\frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}} \text { length of the semi circle } C_{R}
\end{array}
$$

$$
=\frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}}\left(\begin{array}{lllll}
\pi & \mathrm{R}) \quad \rightarrow \quad 0 & \text { as } \quad \mathrm{R} \quad \rightarrow \quad \infty \text { (degree of } \mathrm{R} \text { in } \mathrm{Nr}<
\end{array}\right.
$$

degree of R in $D r$)
Thus $\lim _{R \rightarrow \infty}\left|c_{R} \int \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}} d z\right|=0$
$\Rightarrow \lim _{R \rightarrow \infty} c_{R} \int \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}} d z=0$
From (1) given integral becomes $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} \quad d x=\frac{\pi}{100}-0=\frac{\pi}{100}$
i. e $2 \int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} \quad d x=\frac{\pi}{100} \quad\left[b^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{1}{1+x^{2}} d x\right.$ as $f(x)$ is even fuction $]$
$\Rightarrow \int_{0}^{\infty} \frac{z^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} \quad d x=\frac{\pi}{200}$
$\therefore \int_{0}^{\infty} \frac{z^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} \quad d x=\frac{\pi}{200}$
Examples where \mathbf{N}^{r} is in terms trigonometric function (These examples are also important)
7. Prove that $0 \int^{\infty} \frac{\cos a x}{\left(x^{2}+1\right)} \mathrm{dx}=\frac{\pi}{2 e^{a}}$ by contour integration.(2012)

Soln: Given integral $\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+1\right)} d x \quad$ (starting procedure is little change)
We know that cosax = Real Part of (cosax + isinax) = R.P of $\boldsymbol{e}^{i a x}$

$$
\therefore \frac{\operatorname{cosax}}{\left(x^{2}+1\right)}=\text { R.P of } \frac{e^{i a x}}{\left(x^{2}+1\right)}
$$

$$
\begin{equation*}
\Rightarrow \int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+1\right)} \quad d x=\text { R.P of } \int_{0}^{\infty} \frac{e^{i a x}}{\left(x^{2}+1\right)} d x \tag{1}
\end{equation*}
$$

Consider the integral Consider the integral $\int f(z) d z=\int \frac{e^{i a z} d z}{\left(z^{2}+1\right)}$, taken around the closed contour C consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{e^{i a z}}{z^{2}+1}=\frac{e^{i a z}}{(z+i)(z-i)}$
Clearly $Z=i$, $-i$ are simple poles of $f(z)$ for which $Z=i$ lies inside $C \quad($ where as $z=-i=(0,-1)$ lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=\mathrm{i}$
If R_{1} is the residue of $f(z)$ at $z=i$ then $R_{1}==\lim _{z \rightarrow i}(z-i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow i}(\mathrm{z}-\mathrm{i}) \frac{e^{i a z}}{(\mathrm{z}+i)(\mathrm{z}-i)} \\
& =\lim _{z \rightarrow i} \frac{e^{i a z}}{(z+i)}=\frac{e^{-a}}{2 i}
\end{aligned}
$$

By C.R. Theorem we have $\int f(z) d z=2 \pi i\left(\mathrm{R}_{1}\right)$

$$
\begin{aligned}
& \text { i.e } d f(z) d z=2 \pi \mathrm{i} \frac{\boldsymbol{e}^{-\boldsymbol{a}}}{2 \boldsymbol{i}} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\pi \boldsymbol{e}^{-\boldsymbol{a}}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \pi \boldsymbol{e}^{-\boldsymbol{a}} \\
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\pi \boldsymbol{e}^{-\boldsymbol{a}} \quad \text { (b'cz limit of constant is constant) } \\
& \quad \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\pi \boldsymbol{e}^{-\boldsymbol{a}}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{2}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{e^{i a x}}{1+x^{2}} \quad d x=\pi \boldsymbol{e}^{-\boldsymbol{a}}-\lim _{R \rightarrow \infty} c_{R} \int \frac{\boldsymbol{e}^{i a z}}{1+z^{2}} d z$

Consider $\lim _{R \rightarrow \infty} c_{R} \int \frac{e^{i a z}}{1+z^{2}} d z=\lim _{R \rightarrow \infty} c_{R} \int \boldsymbol{e}^{i a z} \frac{1}{1+z^{2}} d z$
which is in the form of $\lim _{R \rightarrow \infty} c_{R} \int e^{i m z} f(z) d z$ where $f(z)=\frac{1}{1+z^{2}} \& \quad \mathrm{~m}=\mathrm{a}$
and $\lim _{\boldsymbol{l z} \boldsymbol{l} \rightarrow \infty}|\boldsymbol{f}(\mathbf{z})|=\lim _{\boldsymbol{l} \boldsymbol{z} \boldsymbol{l} \rightarrow \infty} \frac{1}{1+z^{2}}=0$
\therefore by Jordan's Lemma, $\lim _{R \rightarrow \infty} c_{R} \int e^{i a z} \frac{1}{1+z^{2}} d z=0 \quad$ (in these examples we r using J.Lemm)
From (2) we have $\int_{-\infty}^{\infty} \frac{e^{i a x}}{1+x^{2}} \quad d x=\pi \boldsymbol{e}^{-\boldsymbol{a}}-0$
i. e $2 \int_{0}^{\infty} \frac{e^{i a x}}{1+x^{2}} \quad d x=\pi e^{-a} \quad\left[b^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{1}{1+x^{2}} d x\right.$ as $f(x)$ is even fuction]
$\therefore \int_{0}^{\infty} \frac{e^{i a x}}{1+x^{2}} \quad d x=1 / 2 \pi \boldsymbol{e}^{-a}$
From (1) given integral $\int_{0}^{\infty} \frac{\boldsymbol{\operatorname { c o s } a x}}{1+x^{2}} \quad d x=$ R.P.of $\int_{0}^{\infty} \frac{\boldsymbol{e}^{i a x}}{1+x^{2}} \quad d x=$ R.P. of $\left(1 / 2 \pi \boldsymbol{e}^{-\boldsymbol{a}}\right)$

$$
\begin{aligned}
& =1 / 2 \pi e^{-a} \\
& =\frac{\pi}{2 e^{a}}
\end{aligned}
$$

$\therefore \int_{0}^{\infty} \frac{\cos a x}{1+x^{2}} \quad d x=\frac{\pi}{2 e^{a}}$
8. Prove that $0 \int^{\infty} \operatorname{cosmxdx} /\left(a^{2}+x^{2}\right)=(\pi / 2 a) e^{-m a}, a, m>0$ by contour integration. $(2011,13,14)$ HOME work: same as above example , in the place of $x^{2}+1$ it is $x^{2}+a^{2}$, so poles are ai, -ai.
8. Prove that $0 \int^{\infty} \frac{\cos m x}{\left(a^{2}+x^{2}\right)^{2}} \mathrm{dx}=\frac{\pi}{4 a^{2}}(1+\mathrm{ma}) \mathrm{e}^{-\mathrm{ma}}, \mathrm{a}, \mathrm{m}>0$ by contour integration.

Soln: Given integral $0 \int_{\infty}^{\infty} \frac{\cos m x}{\left(a^{2}+x^{2}\right)^{2}} \mathrm{dx}=$ R.P of $0 \int^{\infty} \frac{e^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \mathrm{dx}-$
Consider the integral Consider the integral $\int f(z) d z={ }_{c} \int \frac{e^{i m z} d z}{\left(a^{2}+z^{2}\right)^{2}}$, taken around the closed contour C consisting of upper half large circle $C_{R}:|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{e^{i m z}}{\left(a^{2}+z^{2}\right)^{2}}=\frac{e^{i m z}}{[(z+a i)(z-a i)]^{2}}=\frac{e^{i m z}}{(z+a i)^{2}(z-a i)^{2}}$
Clearly $Z=a i$, -ai are poles of order 2 of $f(z)$ for which $Z=$ ai lies inside $C \quad($ where as $z=-a i=(0,-a)$ lies lower part of z-plane ($b^{\prime} c z a>0$) but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=\mathrm{ai}$
If R_{1} is the residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=$ ai then $\mathrm{R}_{1}==\frac{1}{(2-1)!} \lim _{z \rightarrow a i} \frac{d}{d z}(\mathrm{z}-a i)^{2} \mathrm{f}(\mathrm{z})$

$$
\begin{aligned}
& =\lim _{z \rightarrow a i} \frac{d}{d z}(\mathrm{z}-a i)^{2} \frac{e^{i m z}}{(z+a i)^{2}(z-a i)^{2}} \\
& =\lim _{z \rightarrow a i} \frac{d}{d z} \frac{e^{i m z}}{(z+a i)^{2}} \\
& =\lim _{z \rightarrow a i}\left[\frac{(z+a i)^{2} e^{i m z}(i m)-e^{i m z} \mathbf{2}(z+i a)}{(z+a i)^{4}}\right] \\
& =\lim _{z \rightarrow a i}\left[\frac{(z+i a) e^{i m z}(i m)-e^{i m z} 2}{(z+a i)^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{1} \quad= \frac{e^{-a m}(2 i a(i m)-2)}{(2 a i)^{3}}=\frac{-2 e^{-a m}(a m+1)}{-8 i(a)^{3}} \\
&=\frac{e^{-a m}(a m+1)}{4 i(a)^{3}}
\end{aligned}
$$

By C.R. Theorem we have $\int f(z) d z=2 \pi i\left(\mathrm{R}_{1}\right)$

$$
\begin{aligned}
& \text { i.e } d f(z) d z=2 \pi \mathrm{i} \frac{\boldsymbol{e}^{-a m}(\boldsymbol{a m + 1})}{4 i(a)^{3}} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\frac{\pi e^{-a m}(a m+\mathbf{1})}{2(a)^{3}}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \frac{\pi e^{-\boldsymbol{a m}(a m+1)}}{2(a)^{3}} \\
& \quad \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\frac{\pi e^{-a m_{(a m+1)}}}{2(a)^{3}} \quad\left(b^{\prime} c z\right. \text { limit of constant is constant) } \\
& \quad \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\frac{\pi e^{-a m}(\boldsymbol{a m + 1)}}{2(a)^{3}}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z
\end{aligned}
$$

$$
\begin{equation*}
\text { i. e } \int_{-\infty}^{\infty} \frac{e^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-a m}(\mathbf{a m + 1})}{2(a)^{3}}-\lim _{R \rightarrow \infty} c_{R} \int \frac{e^{i m z}}{\left(a^{2}+z^{2}\right)^{2}} d z \tag{2}
\end{equation*}
$$

Consider $\lim _{R \rightarrow \infty} c_{R} \int \frac{e^{i m z}}{\left(a^{2}+z^{2}\right)^{2}} d z=\lim _{R \rightarrow \infty} c_{R} \int \boldsymbol{e}^{i m z} \frac{1}{\left(a^{2}+z^{2}\right)^{2}} d z$
which is in the form of $\lim _{R \rightarrow \infty} c_{R} \int e^{i m z} f(z) d z$ where $f(z)=\frac{1}{\left(a^{2}+z^{2}\right)^{2}}$,
and $\underset{\boldsymbol{l z} \boldsymbol{l} \rightarrow \infty}{\lim }|\boldsymbol{f}(\mathbf{z})|=\lim _{\boldsymbol{l} \boldsymbol{z} \boldsymbol{l} \rightarrow \infty} \frac{1}{\left(a^{2}+z^{2}\right)^{2}}=0$
\therefore by Jordan's Lemma, $\lim _{R \rightarrow \infty} c_{R} \int \boldsymbol{e}^{i m z} \frac{1}{\left(a^{2}+z^{2}\right)^{2}} d z=0 \quad$ (in these examples we r using J.Lemm)
From (2) we have $\int_{-\infty}^{\infty} \frac{e^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-a m}(a m+1)}{2(a)^{3}}-0$
i. e $2 \int_{0}^{\infty} \frac{e^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-a m}(a m+\mathbf{1})}{2(a)^{3}} \quad\left[b^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{1}{\left(a^{2}+z^{2}\right)^{2}} d x\right.$ as $f(x)$ is even fuction $]$
$\therefore \int_{0}^{\infty} \frac{\boldsymbol{e}^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-a m}(\boldsymbol{a m}+\mathbf{1})}{4(a)^{3}}$
From (1) given integral $\int_{0}^{\infty} \frac{\operatorname{cosmx}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=$ R.P.of $\int_{0}^{\infty} \frac{e^{i m x}}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=$ R.P. of $\left(\frac{\pi e^{-\boldsymbol{a m}(\boldsymbol{a m}+\mathbf{1})}}{4(a)^{3}}\right)$

$$
=\frac{\pi e^{-a m}(a m+1)}{4(a)^{3}}
$$

$\therefore \int_{0}^{\infty} \frac{\operatorname{cosm} x}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-\boldsymbol{a m}(a m+1)}}{4(a)^{3}}$
In above example, particularly (i) if $\mathrm{m}=1$ then $\int_{0}^{\infty} \frac{\cos x}{\left(a^{2}+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-a}(a+1)}{4(a)^{3}}$
(ii) if $\mathrm{a}=1$ then $\int_{0}^{\infty} \frac{\cos m x}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-m}(m+1)}{4}$
(iii) If $\mathrm{m}=1$ and $\mathrm{a}=1$ then $\int_{0}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)^{2}} \quad d x=\frac{\pi e^{-1} 2}{4}=\frac{\pi}{2 e}$
9. Prove that $0 \int^{\infty} \frac{x \sin x}{\left(a^{2}+x^{2}\right)} \mathrm{dx}=\frac{\pi}{2 \mathrm{e}^{\mathrm{a}}}$ a, >0 by contour integration.

Soln: Now integral $-\infty \int^{\infty} \frac{x \sin x}{\left(a^{2}+x^{2}\right)} d x=$ Imaginary Part of $\infty \int \frac{\infty}{\infty} \frac{x e^{i x}}{\left(a^{2}+x^{2}\right)} d x$ [$b^{\prime} c z$ of $\sin \mathrm{x}$]
Consider the integral Consider the integral $\int f(z) d z=\int \frac{z e^{i z} d z}{\left(a^{2}+z^{2}\right)}$, taken around the closed contour C consisting of upper half large circle C_{R} : $|z|=R$ and real line from $-R$ to R

Here $f(z)=\frac{z e^{i z}}{z^{2}+a^{2}}=\frac{z e^{i z}}{(z+a i)(z-a i)}$
Clearly $Z=a i$, -ai are simple poles of $f(z)$ for which $Z=$ ai lies inside C (where as $z=-a i=(0,-a)$ lies lower part of z-plane but our region is only upper half of z-plane)
\therefore calculate residue at $\mathrm{z}=\mathrm{ai}$
If R_{1} is the residue of $f(z)$ at $z=a i$ then $R_{1}==\lim _{z \rightarrow i}(z-a i) f(z)$

$$
\begin{aligned}
& =\lim _{z \rightarrow a i}(\mathrm{z}-\mathrm{ai}) \frac{z e^{z}}{(z+a i)(z-a i)} \\
& =\lim _{z \rightarrow a i} \frac{z e^{i z}}{(z+a i)}=\frac{i a e^{-a}}{2 i a}=\frac{e^{-a}}{2}
\end{aligned}
$$

By C.R. Theorem we have ${ }_{c} \int f(z) d z=2 \pi \mathrm{i}\left(\mathrm{R}_{1}\right)$

$$
\begin{aligned}
& \text { i.e } \mathrm{c} \int f(z) d z=2 \pi \mathrm{i} \frac{\boldsymbol{e}^{-\boldsymbol{a}}}{2}=\mathbf{i} \pi \boldsymbol{e}^{-\boldsymbol{a}} \\
& \text { i.e } c_{R} \int f(z) d z+\int_{-R}^{R} f(x) d x=\mathrm{i} \pi \boldsymbol{e}^{-\boldsymbol{a}}
\end{aligned}
$$

Taking limit as $R \rightarrow \infty$ on both sides, we get

$$
\begin{align*}
& \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} i \pi \boldsymbol{e}^{-\boldsymbol{a}} \\
& \quad \lim _{R \rightarrow \infty} c_{R} \int f(z) d z+\int_{-\infty}^{\infty} f(x) d x=\mathrm{i} \pi \boldsymbol{e}^{-\boldsymbol{a}} \quad \text { (b'cz limit of constant is constant) } \\
& \therefore \quad \int_{-\infty}^{\infty} f(x) d x=\mathrm{i} \pi \boldsymbol{e}^{-\boldsymbol{a}}-\lim _{R \rightarrow \infty} c_{R} \int f(z) d z \tag{2}
\end{align*}
$$

i. $e \int_{-\infty}^{\infty} \frac{x e^{i x}}{x^{2}+a^{2}} \quad d x=\mathbf{i} \pi \boldsymbol{e}^{-\boldsymbol{a}}-\lim _{R \rightarrow \infty} c_{R} \int \frac{z e^{i z}}{z^{2}+a^{2}} d z$

Consider $\lim _{R \rightarrow \infty} c_{R} \int \frac{z e^{i z}}{z^{2}+a^{2}} d z=\lim _{R \rightarrow \infty} c_{R} \int \boldsymbol{e}^{i z} \frac{z}{z^{2}+a^{2}} d z$
which is in the form of $\lim _{R \rightarrow \infty} c_{R} \int e^{i m z} f(z) d z$ where $f(z)=\frac{z}{z^{2}+a^{2}} \& \quad m=1$
and $\lim _{l z l \rightarrow \infty}|f(z)|=\lim _{l z l \rightarrow \infty} \frac{z}{1+z^{2}}=0$
\therefore by Jordan's Lemma, $\lim _{R \rightarrow \infty} c_{R} \int e^{i z} \frac{1}{1+z^{2}} d z=0$
From (2) we have $\int_{-\infty}^{\infty} \frac{x e^{i x}}{x^{2}+a^{2}} \quad d x=\mathrm{i} \pi \boldsymbol{e}^{-\boldsymbol{a}}-0$

$$
\begin{aligned}
\therefore \text { integral } \int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}} \quad d x=I . P . \text { of } \int_{-\infty}^{\infty} & \frac{e^{i x}}{1+x^{2}} d x \\
& =\pi \boldsymbol{e}^{-a} \quad \text { I.P. of (i } \pi \boldsymbol{e}^{-a} \text {) } \\
& =\frac{\pi}{e^{a}}
\end{aligned}
$$

i. e $2 \int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} \quad d x=\frac{\pi}{e^{a}} \quad\left[b^{\prime} c z \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} \frac{x \sin x}{1+x^{2}} d x\right.$ as $f(x)$ is even fuction]
$\therefore \int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} \quad d x=1 / 2 \pi \boldsymbol{e}^{-a}$
given integral $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} \quad d x=\frac{\pi}{2 e^{a}}$

