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Some more examples on poles:

Note: If N" is polynomial function or sinz or cosz or e? and D"is polynomial function then
power of linear factors of D' gives order of pole.

. _ z
Eg. Find poles of f(z) = DE 22

Clearly z=1is pole of order 1 i.e simple pole and z=2 is a pole of order 2.

Z Z

ze? _ ze _ ze
(z-2)(22-52z+6)  (z-2[(z-2)(z-3)] (z-2)2(z-3)

Eg. Find poles of f(z) =

Clearly z=3 is pole of order 1 i.e simple pole and z=2 is a pole of order 2.

eZ

Eg. Find poles of f(z) RO

Clearly z=0 simple pole, z=-4 is pole of order 3 and z=3 is a pole of order 4.

Eg. Find poles of f(z) =———— = - where g = ZLY1T#_ C143
(z4+z+1) (z—a)(z-PB) 2 2
&p - —1—2i\/§

Clearly z= a, f are simple poles
Theorem: Zeros of analytic function are isolated
(i.e if z=a is zero of f(z) then it has no other zeros other than a in the nhd. of z=a)

Proof: Let f(z) be analytic and z=a be zero of the function f(z) of order m then by the
definition f(z) = (z-a)™ (@(z)) where @(a) #0.

i.e @(z) is analytic and non zero in the neighbourhood of z=a. Also (z-a)™+ 0 for all values
zZ# a



Thus there exists no other points in the neighbourhood of z=a at which f(z) =0
Hence the zero z=a is isolated. It is true for all zeros of f(z).
.. zeros of f(z) are isolated.

Theorem: poles of function are isolated.

(i.e if z=a is pole of f(z) then it has no other poles other than a in the nhd. of z=a)

Proof: Let z=a be a pole of order m of f(z), then by definition of pole principal part of f(z) in
the Laurent’s expansion have m no. of terms.

: v ony b b, by bm
leflz)= Znooan (z - @)™ + (z-a) ¥ (z—a)? ¥ (z—a)3 (z-a)™
- _ Yo RN bm b1 b, by
e f(z) = Yopan (z—a)™ + e + P T (reverse order)
i.ef(z) = (z—t)m [Z;‘{’ZO ap (z — a)™™ + bm + byy_1(2-2) + by (z-2) 24 --- +b1(z-a)m'1]
—_ 1
= G 2@ 1)

where 8(2) = [(Q0y a, (z = @)™™) + b + byy_y(z-2) + By (2-2)24---mermev +bi(z-a)™]

Clearly @(z) does not tend to infinity for any finite value of z as powers of (z-a) are positive.
= There is no other pole in the nhd. of z=a.

.. from (1), f(z) has only the pole z=a and no other poles in the nhd. of z=a.

Thus poles of f(z) are isolated.

Note: Both theorems are important



Unit IV
Definition of residue, Cauchy’s Residue Theorem and Counter Integration

Definition of Residue (important for 2 marks): Let f(z) be analytic and z=a be a pole of f(z) of
order m inside closed curve C then by Lauernt’s Theorem we have

oo _n 1 1
f(z) = Ymo @n(z — @)™ + by P b2 iy tom o

bm=— | _f@ 4,

" 2mi e (z—a)~mH1

Lf f(2)

amide Gt =2im_fc f(z) dzis called residue of the function

Here particularly by =

f(z) at a pole z=a.( i.e coefficient of (; in the Prin. Part, i.e the term left after + ve power)

Note: Residues are usually denoted by R1, Ry, -------

For example: If f(z)= = z clearly z=1 is a pole of order 1 (simple pole) and z=3 is a

1)(z-3)2 "’
pole of order 2

1 . . 1 .1
here coefficient of ——is -

By using partial fraction we have f(z) = -0 103 + 2 7D 52
and coefficient of —— is —

(z-3) 4
~ residue of f(z) at z=1is R1 = i and residue of f(z) at z=3 is Rz = —i

Calculation of residues:

Calculation of residue by using above partial fraction method is tedious if more factors are
there in D". So there are easy methods to calculate residues.

(i) Calculation of residue of f(z) at simple pole (pole of order 1): If z =a is a pole of
f(z) of order 1 then by Laurent’s Theorem we have

f(z) = Dico an(z = @) + b1

Multiplying throughout by (z-a) , we get

(z-a) f(z) = X5 an(z — a)™ 1 + by

Taking the limit as z—a on both the sides we get
lim(z — a)f (2)= lim X7 an(z — )™ + by

i.e Li_l)lcll(z —a)f(z)=0+by =>b; = y_l)lcll(z —a)f(2)




obtained by R; = llm(z —a)f(z)

Thus if z =a is a pole of f(z) of order 1(simple pole) then residue of f(z) is

(ii) Calculation of residue of f(z) at pole of order m:
Above method is not applicable if z=a is pole of order more than 1

Thm. (Important for 5 marks) : Prove that z=a be a pole of f(z) of order m then

m

— m
(m—1)! 708 a7 1((2 a)™ f(z).

Proof: Let z=a be a pole of f(z) of order m, then

residue of f(z) at z=ais R1 =

- J'o — " 1 1 1
f(z) = X n=0 ap(z—a)" +b: _a)+ b )2 + + bm o
T - a)m[Zn 00 (Z—a)""™m +bi(z— )™t +ba(z —a)™F 4 bm]
(z a)mQ)(Z)
where 0(2)= Y a,(z — a)™™ +bi(z — a)™ 1 + ba(z — a)™ 2 +-—-- bm
~f(z) = (Z(D_(gm (1) where @(z) is analytic at z=a.
By the definition of residue of f(z) we have b; = i f f(z)dz
- 2(z) - m-1 th
“omide Geam (m o @™ *(a) by C.I.formula for n™ derivative .
m—1 1 . am-
= e m 07(2) =y m s 5 (9(2)
1 am-1 _\m
- (m—l)! il_)n;ll dZm—l (Z a) f(Z)

From (1)

Thus residue of f(z) at pole z=a of order m is

_ 1 . am? m
Rl_(m—1)!lzl_>n¢} dzm-1 ((z — a)™ f(2).

Note: Sometimes residue of f(z) at pole z=a is also written as Res.(f,a)

Examples on calculation of residues:

1. Find the residue of f(z) =
Soln.: Now f(z) =

(2017)

_ zZ
-1 (z-1)(z+1)
Clearly z =1 and z=-1 are poles of order 1, ie simple poles
If Ry is residue of f(z) at z=1 then Ri= 1im(z - 1)f(z) = lirr}(z - 1) f(2)
Z—

= lim(z - B————=-

z-1 (z-1(z+1) 2

1. .
=~ R1 = is a residue at 1.



. . _ € =i
2. Find the residue of f(z) = ZE at z=i (2017)

e’ _ e’
(22412 (z+0)2(z — i)?

Clearly z =i and z= -i are poles of order 2

Soln.: Now f(z) =

If Ry is residue of f(z) at z=i then Ri= : lim i(z — )% f(z)

2-1)! z-i dz

. d N2 BZ
=lim—(z—-1)* ———
z—i dz (z+0)%(z - )?
. d e% ) z+ 0)2eZ-2(z-1)eZ . z+i)eZ— 2e%
= lim -hm( ) (z70) =11m( )

z—i Az (z+ )2 75§ (z +i)* PN (z+i)3

_2(i-1)e' _ i(i-1)et

~ Ry — = is a residue at i.
—-8i 4

. . _ .
3. Find the residue of f(z) = iz at all its poles. (2016)
z4 z4
Soln.: Now f(z) " ra " Glaheiad

Clearly z =ai and z=-ai are poles of order 1, ie simple poles
If Ry is residue of f(z) at z=ai then Ri= lim(z — ai) f(z) = lim (z — ai) f(z)
Z—at Z—at

1 24 a3
= li —a——=—
zl—glli(z (z—abfzFai) 2i

3
a> . . .
~R1 =E is a residue at z = ai.

If Rz is residue of f(z) at z=-ai then R2= lim (z + ai) f(z) = lim (z + ai) f(2)
zZ— —al Z—>—at

. . z4 a3
B zl}r_nai(z +ﬂr)/(z—ai)(z+a—i'j7—_2i
3
~Ry=— % is a residue at z = - ai.
HOME work
5. Find the residue of f(z) = Y atz=2 (2016)
(z-1)(z-2)
6. Find the residue of f(z) = = Z+ 1 at its all poles (2015)
7. Find the residue of f(z) = —~  atz=2 (2014)
(z—1)(z-2)
8. Find the residues of f(z) = z/(z?+1) at its poles (2015)
HOME work
9. Find the residues of f(z) = 2 atz=2 (2013, 2016)
(z—-1)(z-2)

2z+3
Soln.: Now f(Z) —m

If Ry is residue of f(z) at z=2 then Ri= lin%(z —-2)f(z) = lin%(z —2)
VA VA

Clearly z =1 and z=2 are poles of order 1, ie simple poles

2Z+3

_2z+3 7
(z-1)(z-2) 1



~ R1=7 is aresidue at z= 2.

eZ

10. Find the residues of f(z) = > atz=0 (2013)
z(z-1)
Soln.: Now f(z) =Z(Z_1)2 Clearly z =0 is simple pole and z=1is pole of order 2.
. . _ T _ P e’ _1
If R1is residue of f(z) at z=0 then Ri= lzl_r)ré(z 0) f(2) lzl_r)r(}(z) ot

~ R1=1 isaresidueatz=0.

Cauchy’s Residue Theorem (Compulsory question for 5 marks)

Statement: Let f(z) be analytic within and on closed contour C except at finite no. of poles z3, z;,
Z3, -----m-m--- zninside C then c[f(z)dz dz = 2mi(R1 +R; + Rs + Rn) = 2mi( sum of
residues at these poles inside C)

where Ry, R2, R3 Rn are residues at poles z3, 25, z3, ----------- zn resply.
Proof: By hypothesis z1, 7,23, ----------- zn poles of f(z) inside C. Therefore function f(z) is not analytic
at these points in side C. Hence construct small circles y;, V2, V3, Vn

then f(z) is analytic in the egion bounded by closed curves C, y4, v2, V3, - -———---

By Cauchy’s theorem for multi connected region we have

df(2dz =y If(@dz + v, [f(D)dz +-—- Yo lf (2)dz (1)

By definition of residue of f(z) we have

1

Ri=— 1 [f(2)dz where y, is circle around the pole z1 and Ri is res.

v, [f(2)dz =2mi Ry

Similarly y, If(2)dz =2miRy, y3 If(2)dz =2miRs,  -----meemeemev Yo If (2)dz = 2mi R,
Then (1) becomes, c[f(z)dz = 2mi Ri+ 2mi Ry + 27i Rs + 27i Ry
=2mi(R1+ Ra+ Ra+ Rn)

= 2mi (sum of residues at these poles inside C)
Thus if f(z) be analytic within and on closed contour C except at finite no. of poles z3, z,, z3, ---------
--zninside C then

I c|t§zzdz dz =2mi(R; +R; + R3 +----ooeemeeeo- Ry) =2mi( sum of residues at these poles inside C) I

where R, R2, R3 Rn are residues at poles z3, 25, z3, ----------- zn resply.




Hence the proof
Evaluation of integrals using C.R. Theorem:

We are going to solve three types of examples using C.R. theorem

(i) cIf(z)dz where Cis closed curve

(ii) fozn f(sin®, cos0)dO
o . Real integrals
(i) J__f)dx or fO f(x)dx

Evaluation of Examples on type (i): c[f(z)dz where Cis closed curve
We already solved this type of examples by Cauchy’s integral formula, but by usingC. R. theorem
easily we evaluate.
Procedure: 1. Consider f(z), find poles and their orders.
2. See which poles are inside C
3. Calculate residues at these poles by calculation of residues method
4. Apply C.R.thm c[f(z)dz dz = 2mi( sum of residues at these poles inside C)

dz where C; Izl =4 (2016)

1.Evaluate cf stn23
)

sinz
z—1)3

Soln.: Now given intergal ch(z)dz = cf - dz where f(z) = Clearlyz=misa

pole of order 3 which is inside the circle IzI =4

m Lz - m)? f(z)

(-1 Z—)n dz?

1 sinz
_2' Z i dZZ(Z_Ra’g/ R'a’a/

If Ry is residue of f(z) at z= m then Ri=

(z—
2 . . .
= lim —2 sinz = lim (—sinz) =0
zom dz ZoT
=0

sinz

(z—
2.Evaluate J dz over closed contour C. (2014, 2015)

Soln: Given integral J f(z) dz = J dz where f(z) =1 which is analytic every where.
~ By Cauchy’s Thm J dz=0
3. Evaluate dzwhereCislzl=2 (2017)

~ By C.R.Thmc|f(2)dz = (] >dz = 2mi(R1) = 2mi(0)=0

VA
2427-3

Soln.: Now given intergal c[f (z2)dz = ] ZZ+ZZ

dz where f(z) = = -
2z-3

2242z-3  (z-1)(z+3)
Clearly z=1 and — 3 are simple poles of f(z) for which z=1 is inside the circle Izl =

~We have to calculate residue only at z=1.

If Ry is residue of f(z) at z=1 then Ri= lim(z -1 f(z) = lirr%(z - 1) f(2)
VA

1

Z
= lm(z - BT ",

1, .
~R: =, isa residue at 1.



~ByC.R.Thmc|f(2)dz = (] dz = 2mi(R1) = Zni(i )= =

z
z242z-3

4. Prove that f dz =% where Cis lzl =

Zn+1

Soln.: Now given integral cjf(z)dz = cJ dz where f(z) = Clearly z=0isa pole of

Zn+1 Zn+1

order (n+1) which is inside the circle Izl =

If Ry is residue of f(z) at z= 0 then Ri=

(n+1-1)! z—>0 dz "(Z ~ 0@
1 n
n' Z_>0 dz"(z)

1 an

lim — e? 11m e?=—
n' zom dz™
z—>0

~ByC.R.Thmc|f(2)dz = J v dz = 2mi (Ry) = Zm( )— ﬂ
5. Evaluate | 23/(z+1) dzif cis Izl =

3
Soln: Now given intergal c[f (2)dz = cfzi—l dz where f(z) = —

Clearly z=—1 is simple pole of f(z) which is inside the circle |zl =
~We have to calculate residue only at z= - 1.

. . . . 23
If Ry is residue of f(z) at z=-1 then Ri= Zl_1>rr_11(z + 1) f(z) = le)rpl(z +1) = j

~ R1=—1 isaresidue at -1.
23
~ By C.R.Thmc/f(2)dz = cjm dz = 2mi(R1) = 2mi(—1 )= -2mi

6. Evaluate JJ dz/(z-2) if cislz-21=4 (2016)
7.Evaluate o dz/z(z%+4) if cis Izl =

Try 6 and 7 as exercise.

8. Obtain residues of f(z) =

1)2 at all singularities and hence evaluate cff(z) dz where cis lzl =

coSsz

Soln: Now given intergal cff(z)dz = ¢f[= Z)Z dz where f(z) = Clearlyz=0is a

z(z—-1 z(z—-1)2
pole of order 1 and z =1 pole of order 2, both are inside the circle Izl =
. . _ —1; —T; CoSsz —T; Ccosz —
If Ry is residue of f(z) at pole z= 0 then R: ;l_r)r(l)(z) f(z) lzl_r)ra(z) 71 lzl_l’)r(l) = 1

o R]_ =1

lim (z —1)? f(z)

(2 1)'z 1dz

- L7 —1)2 2222
2! Zh—>n1l dz(Z D z(z—-1)2

If Rzisresidue of f(z) at pole z= 1 then R =

COoSzZ



d cosz] - lim [z (-sinz)— cosz (1)

z—-1 dz z 751 72 = '(Sinl +C051)

Rz = -(sin1+cosl)

= _dz = 27 (R1+ R2) = 2mi(1+sinl +cos1).

o By C.R. Thm CJ-f(Z)dZ =C Z(Z—l)z

9.Evaluate cf z/[(z%+1)(z>-9)] dz where c is the circle Izl =

V4

Soln: Now given intergal c/f(z)dz= cf @iD2-9)

de where f(Z) =
z

(z+i)(z—i)(z+3)(z-3)

and Cis circle 1zl=2

Clearly z=i,—i, 3,—3 simple poles for which z=i,—i lie inside the circle C.

~ we have to calculate residues only at these two poles.
If Ry is residue of f(z) at pole z=i then Ri=lim(z —i) f(2)
VA

z

= lzlir}(z —1) (z+1) (z—1) (z+3)(z—3)
i 1

Ziril (z+i)(22-9) = (20)(-10) -20

o R]_ =— i
20
If Ry is residue of f(z) at pole z= —i then R; = lim (z + i)f(z)
Z>—=1

z

=lim 2+ D) e e
- lim z —i _ i
= D(Z2-9)  (—20)(-10) 20

~ By C.R.Thmc|f(2)dz = cf

_— i ; 1 1 i
ZZ+1)(ZZ -9) dz = 2mi (Rl + RZ) = 27l'|(— % — 5) )_ _?

10. Evaluate cf dz/[z%(z+4)] where cis the circle Izl = 5

1 .
Soln: Now given intergal c[f(z2)dz= c[5—— 2( vy dz where f(z) s Clearlyz=0is a
pole of order 2 and z =-4 is simple pole both are inside the circle Izl =
If Ry is residue of f(z) at pole z= 0then Ri= L lim 2 22 f(z)
(2-1)! z-0 dz
=2 lim < 22 > !
2! z-0 dz z4(z+4)
1
= lim 2025 = liml- 551 =



If Rz is a residue of f(z) at simple pole z=-4 then R; = lim4(z + 4) f(z)
z— -

. 1
- Zl_l)l’_rh (Z + 4) 7% (z+4)
| 1
=lim - =—
zZ—>—4 Z 16
1
Ry =
1 . -1 1
+By C.RThmclf(2)dz = cl7——dz = 2mi (Ru+Ro) = 2mi(; + 1-)=0
11. Evaluate cf z dz/[(z+i)(9-z%)] dz where c is the circle Izl = 2 (2014)
Exercise
Soin:

12. Evaluate cf (2z+1)/(z2+z-6) dz where c is the circle Izl =4 (2008)

2z+1 2z+1 2z+1
> dz where f(z) = =
z%4+7—6 z%+z—6 (z+3)(z-2)

Soln: Now given intergal cff(z)dz = ¢f Clearly

z=—3 and z = 2 are simple poles and both lie inside the circle 1zl =4 .
If Ry is residue of f(z) at pole z= —3 then Ri= lim3(z + 3) f(z)
z— —

2z+1
= i —
Am 43 e
im 2L
Z——3 (Z—Z) -5



If Rz is a residue of f(z) at simple pole z=2 thenR; = lirr21(z —2) f(2)
zZ—

. 2z+1
=lim(z =2 e
i 25
z—2 (z+3) 5
o Rz =1
2z+1 . . .
~ By C.R.Thmc/f(2)dz = Cjzz+z—6 dz = 2mi (R1+R2) = 2mi(1 + 1 )= 4mi

13. Evaluate cf (2z+1)/(z-2)(z+3)(z+1) dz where c is the circle Izl = 5/2
J- 2z+1 2z+1

S D@3 ) dz where f(z) T 2-2)(z+3)(z+1) and

Soln: Now given intergal c[f(z)dz =
Cis lzl =§ Clearlyz=—3, z = 2 and z = —1 are simple poles for which z=2 and -1 lie

inside the circle Izl ==

If Ry is residue of f(z) at pole z= —1 then Ri= lim (z + 1) f(z)

2z+1
Zl_l)IIl (Z t 1)( +3)(z-2)(z+1)
2z+1 -1 1
=lim ——— = — ==
z-—1 (2-2)(z+3) -6 6

If Rz is a residue of f(z) at simple pole z=2 thenR; = llrrzl(z - 2) f(2)
Z—>

. 2z+1
- ;1_r>r21 (z—2) (2+3)(z—2)(z+1)
2z+1 5 1
=lim ———— =— =-
z—2 (z+3(z+1)) 15 5
1 1
~R1 =% and Rz =3
2z+1 . .1 1 .11 11mi
~ By C.R.Thmc/f(2)dz = cf(z_z)(z+3)(z+1) dz = 2mi (R1#+Ry) = Zm(g + )= 27 (E) = ( " )

14. Evaluate (i) cf dz/[z(z%+4)] where c is the circle Izl =5 (i) cf

dz where C; Izl =1 (2015)

z(22+ 9)
. B 1 1
Soln: (i) Now given intergal c[f(z)dz= ( vy dz where f(z) = il
and Cislzl=5 Clearlyz=0, z = 2i and z = —2i are simple poles and all lie inside the

circlelzl =5 .
- we have to calculate residues at all these poles.

If Ry is residue of f(z) at pole z= 0 then Ri= ZIer(} zf(z) = ;1_r)rol zZ pry

= 11m 2
z—0 (z4+4)

P

1
S~ Ri=-=
1 4

If Rz is a residue of f(z) at simple pole z=2i then R; = lim (z — 2i) f(z)

= lim (z — 2i)

z—-2i z(z+21) (z—-20)



1

m — =
z—2i z(z+2iQ) -8

1
~Ry=—-=
2 8

If Rz is a residue of f(z) at simple pole z=2i then Rs = lim _(z + 2i) f(z)

1
- Zl}n%l (z + 2i )z(z+2i)(z—2i)
_ -1
oy 220 -8
1
o R3 = — 5
~ByC.R.Thmc/f(2)dz = (] = 4) dz = 2mi (R1+R; +R3) = 27TI(— — % — —) 2wi (0)=0
(ii) Now given intergal c[f (z)dz = cf dz where f(z) = Zoh z4 and C
z(z2+9) z(z%+9) z(z+3i)(z-3i)
islzl=1 Clearlyz=0, z = 3iand z = —3i are simple poles for which only z=0 lie inside
thecirclelzl=1 .
~ we have to calculate residues at all the pole z=0.
z2-4

If Ry is residue of f(z) at pole z= 0 then Ri= hrr(} zf(z) =limz

z-0  2z(2%2+9)

O | =

1

= —4 =
70 (2%+9)
“Ry= _?4
~ By C.R.ThmcJf(2)dz = cf 2+9)dz = 2mi (R1) = 27Ti(%4 )=_?87ti
(iv) cjm dz where C; Iz =3 (2011, 2015, 2016)
(v) (iv) cf(z3_z) dz where C; Izl =2 (2015)
=2 (2012, 2015)

Try above three example as exercise
(vi) cf(4 o where C;(a) lzl =1 (b)lz-11=1 (2014, 2016)
Soln: (a) Now given intergal c[f (z)dz = cJ( dz where f(z) -(421 5 =

and Cis Izl =
IzI=1 . -3/2

~ function is analytic inside C and hence by Cauchy’s Theorem cjf(z)dz= 0

1 Clearly z = _73 and z = % are S|mple poles and both lie outs

(2z+3)(2z-3)



1 1
(4z2-9)  (2z+3)(2z-3)

(b) Now given intergal c/f(z)dz = cf dz where f(z) =

(429
_ 1

_4(z+g) (z—g)

and Cislz-11=1

E L!%

Clearly z = _73 and z = % are simple poles of f(z) for which z :g lie inside the circle 1z-11=1

[ distance between _73 and centre (1,0) is /(— —1)2 == >rad|us 1,. —3 lies outside C]

= we have to calculate residues at all the pole z=5.

1in31( z—2) f(2)

If R1isresidue of f(z) at pole z= g then Ri

1 -y
ZHE‘(Z D e

2
= hrg] 1 = = —
-3 4 12

FRi=
~ By C.R.Thmc/f(2)dz = cf(4 > 9)dz = 2mi (R1) = 2ni(% )=%ni
HOME WORK
(vii) cf dz where C; lz+11=2 (2017) (viii) cf dz where C; Iz =3 (2018)
(viii) Prove that ) cfm dz =6miwhereC;lzl=4 (2018)
Proof: Now given intergal c/f (z)dz = CIT dz where f(z) —# and Cislzl = 4
Clearly z =3 and z = —1 are simple poles and both lie intside the circle 1zI=4 .

~ we have to calculate residues at all the pole z=3 and 1 both.
If Ryis residue of f(z) at pole z= 3 then R: lim(z —3) f(2)

3z-1
=1 -3) ———
m(z=3) e
3z-1 8
= lim == =2
z—3 (z+1) 4
o R]_ = 2
If Rz is residue of f(z) at pole z= —1then Ri= lim1 (z+1)f(2)
z— -
3z-1
= li 1) ———
Am 2+ D e
32-1 _ -4
= lim =— =1
z— -1 (z2-3) -4

o Rz =1

3z-1
(z-3)(z+1) z

~ By C.R.Thmc/f(2)dz = (] 2mi (R1+R2) = 2mi(2 + 1 )= 6mi



15. Find residues of f(z) =Z( at z=0,1and -2 and hence evaluate c/ f(z) dz where c :lzl =3.

1
z23z+2)

Soln:

Il. Evaluation of real integral of the type foznf(sine, cos0)do

Contour Integration: Evaluation of integral of above type by our usual real
integral is sometimes tedious, hence in such cases we reduce above integral to

cff(z)dz taken around the closed contour C, and thus is called contour integration.

[In PUC, we already come across the examples of the type fozna+blcosad0 , fOZ” a+b1sin0d0 etc.

Such type of examples can be solved easily using contour integration.]
Procedure for evaluation above integral:

21 .
Consider given integral fO f(sin®B,cos0)do (1)
Take substitution e =z so that e’ = i and c059=% (z+ %) and sin0= le (z- %)

dz dz

ield iz

and also e®idf = dz => dO=

- dO= ?—j and 0 =0 to 2z is for circle C : Izl =1

By all these substitution (1) becomes

foznf(sine, cos0)do=c[f G (z + %)zll (z — %)) dz

= c/f(2)dz , anyhow terms inside the brocket are functions of z.

And the integral cff(z)dz can be evaluated by C.R. theorem as in previous examples taken around
unit circle C: lzl =1
NOTE: For the examples of above type this substitution is fixed and is C is also always unit circle
IzI=1.
Examples:(compulsory one example for 5 marks)

(i) If N" is constant and D" either in terms of sinf or cos0

do
5+4cos0

1. Using contour integration , evaluate of? (2014, 2015, 2018)



do

Soln: Given integral of*®
5+4co0s0)

(1)
, d i .
Put e =z so that dO= f (for all examples it is same, so we remember this)

And cosf= = (z + l), Cislzl =
2 z

dz dz
9 -
Then integral (1) becomes o/?" iz =c lz
g (1) I 5+4c056 I (5+45 (Z+ )) j 542 (zz+1)
zZ
& d
— iz _ Z
- CJ (Sz+222+2) - C-[ iz( 52+222+2>
VA zZ

=3¢

i 222+52+2

=3 cjf(z)dz """"" (2)

L = ! (D"is having linear factors)

222+45z+2  (2z+1)(z+2) - 2(z+%)(z+2)

Where f(z) =

Clearly z = - % and z = - 2 are simple poles of f(z) for which z = - % lies inside the circle IzI=1
= calculate residue at z = —%

If Ry is the residue of f(z) at pole z = - : (simple pole)
1

Thenfu= lim (24 D @)= lim 2+ ) sezem 1M %o
2 2 2
_ 1 _ 1 1
2(-5+2)  2(3) 3
1
A Rl = 5
By C.R. Thm we have ¢ f(z)dz =2niR; = Zni(é) ............... (3)
Substitute (3) in (2) then given integral o> == ch(z)dz =1 (ﬂ = —“

5+4co

do 2m .
= — (answer should be in terms of real no. as mtegral is real)
5+4cos® 3

(Same procedure for examples of these types)
2. Using contour integration prove that o/2* d0/ (a+bcos@) = 271t/Va2-b? where Ibl<a. (2012)

(1)

, d o .
Put e =z so that do= i (for all examples it is same, so we remember this)

Hence o)™

Soln: Given integral of*"
a+bcoso

and cose-— (z + ) Cislzl =

dz dz

de = I

. 2 - iz — iz

Then integral (1) becomes of TR c/ o (22 2) cl — (Z2+1)
2z
dz d
S zZ
=c] ‘Z =c]

( 2az+bzz+b)

. (2az+bzz+b)
12\ ———
2Z

2—2 -2 f(2)dz ~—m (2)

i bz2+2az+b i



1 1 1
bz2+2az+b b (z2+2 biz+1) ~ b(z-a)(z-B)

22 ay2_ 22 ay2_
25+ @Rt 2y (Rt _p44aaZ-ap?  —a+Va?—b?
2 - 2 - 2b - b

Where f(z) = (D"is general eqn. so let the factors be in

general ) where a =

—a—aZ-b? N . . .
&B= % ( b’cz irrational roots occur in conjugate pairs)
. —b+Vb2—4ac .
[ these roots are obtained by formula x = +T4ac method, for factors of this type we use

the same procedure]
Clearly z= o and z = 3 are simple poles of f(z) for which z = a lies inside the circle IzI=1

, . . —a+1’az—b2
[b’cz in the example it is given that Ibl<a, .. ———|<1,i.e|al < 1i.e distance between

_ aZ_bZ

aand centreis < 1,but |B| >1 as |- >1]

~ calculate residue atz =«
If R1 is the residue of f(z) at pole z = a (simple pole)

ThenR; = llm(z —a)f(z) = hm(z —a)

bz a)(z B AmL e
1 1 1

“b-p) b(zx/ai—bz "~ 2VaZ-p?

)

. R —_— 1
T aVazop?
| i
By C.R. Thm we have c[ f(z)dz =2nlIR; = 2xi o b2 = = (3)
2z 2 _ E i _
Substitute (3) in (2) then given integral of — lcff(z)dz l_ m)
_ 2r
VaZz-p?
2 do _ 27 . . .
Hence of atbooss - Jazpz (answer should be in terms of real no. as integral is real)
do 2z

[ In first example if we put a=5, b= 4, we get answer of*" — whlch is true]
3

5+4cosd 52— 42

3. Using contour integration prove that of™ do/ (a+cosO) = n/Va*-1 where a>1.

o 5, do
Soln: Given integral of —coss (1)

: d o .
Put e® =z so that do= L—i (for all examples it is same, so we remember this)

and coso= - (Z + ) Cislzl =

dz dz
de i =
. 2 - iz — iz
Then integral (1) becomes of o cf (5 ) cl - (22;1)
z

dz
2az+z%+41 . (az+z%+1
(252) ()

:C_[



=ECJL=EcIf(Z)dZ """""" (2)

i z242az+1 i
1 1

z2+2az+1  (z2+2az+1) - (z—a)(z—B)

—-2a++/(2a)2-4 _-2a+./(2a)2-4 _ -2a+V4a?-4
general ) where a = 2( Yot 2( ) = . =—a++Vaz -

Where f(z) = (D"is general eqn. so let the factors be in

& B=—a—+va? —1 (b’czirrational roots occur in conjugate pairs)

. —b+Vb2— .
[ these roots are obtained by formula x = +T4ac method, for factors of this type we

use the same procedure]
Clearly z = a and z = 3 are simple poles of f(z) for which z = « lies inside the circle lzl=1

— [q2_
[b’cz in the example it is given that 1<a, - ‘Hfal <1,i.e |0 < 1i.e distance between
—a—/a2—
aand centreis < 1,but |B| > 1 as afal| >1]

~ calculate residue atz =«
If R1 is the residue of f(z) at pole z = a (simple pole)

ThenR; = 11m(z —a)f(z) = llm(z - Q)

—— = lim
(z oc)(z B) zoa (z—B)

1 1
T (a=p)  2VaZ-1
|
"Rl_zm

1 i
2ot Y (3)
Substitute (3) in (2) then given integral IZ“ =—cIf(Z)dZ =; m)

_ 2z
aZ_bZ

By C.R. Thm we have cf f(z)dz =2nIR; = 2ni

do 2z
a+cosb ag2-1

[Same as example (2), in the place of b we have to put b=1]

Hence o/*

4. Using contour integration prove that /2" d0/ (1+acos0) = 271t/V1-a? where lal<1.

5. Using contour integration prove that of>* d0/ (2+cos0) = 27/v3 (2013, 2015)
HOME work (same as above examples, only values a and b are different)

6. Evaluate of>" do/ (a+bsin0) by contour integration where lal <1

(1)

, d Y .
Put e® =z so that do= —Z (for all examples it is same, so we remember this)

Soln: Given integral of*" _
a+bsind

and sin9=2—l (z - —) Cislzl =

dz dz
de - -
Then integral (1) becomes ¢f%* =cC Z =cC Lz
8 ( ) OI a+bsind I a+b% (Z_ i)) '[ a+b(z;—1>
Lz



dz
dz

—_ lZ
'CJ (2alz+bzz b) CI iz( 2aiz+bzz—b)

2iz i2z

=2cfm-2df(z)dz --------- (2)
1 _ 1 _ 1

bz2+2aiz—b b (z2+2 a—iz—1) "~ bz-a)(z—P)

—ar aiy; — aiy;
25 +\I(2 )+4 25 +\I(2 )=+ —21a+\/4(al)2+4b2 —21a+21\/a2 b?

Where f(z) = (D"is general eqn. so let the factors be in

general ) where a =

. —a+\/a2—b , . . . .
= ( b’cz irrational roots occur in conjugate pairs)
. —a—va?-b?
& p=i —
. —-b+Vb2-4 .
[ these roots are obtained by formula x = % method, for factors of this type we use

the same procedure]
Clearly z = a and z = 3 are simple poles of f(z) for which z = « lies inside the circle lzl=1

, . L - +1/ 2_p?
[b’cz in the example it is given that Ibl<a, - % <1,i.e || < 1i.e distance between

—a—Ja2—b?

aand centreis < 1,but || >1 as -

> 1 and lil=1]

~ calculate residue atz = a
If Ry is the residue of f(z) at pole z = a (simple pole)
ThenR; = 11m(z —a)f(z) = llm(z —a)

1 1 1
" b(a-B) b (zi\/az—bz) " 2ivaZ-p?

b

bz a)(z B o ba—p)

. R - 1
“ T 2ivazop?
. 1 _ b
By C.R. Thm we have cf f(z)dz =2ni Ry = 2ni—== = \/az — (3)
. . . . 2,“ - - _
Substitute (3) in (2) then given integral of e =2c/f(z)dz =2 (W)
_ 27
VaZ-p?
2 do _ 2z . . .
Hence of arbsind - a2z (answer should be in terms of real no. as integral is real)
2T do 27T 4de

7. EvaIuateJ —+sme SrasinG (2009)

2 27 8

Soln: In above example puta=-, b=1, we get Izn @ 2 == ?”

—+sm6 5.2 5 9
V@ 1 16

8. Using contour integration prove that OJ.ZTC [cos20 / (5+4cos0)] dO = m/6.

Try it as home work



Soln: In this example N' is not constant it is a function of cos6, to solve example of this type starting
procedure is different

We have €2 = c0s20 +isin20 = c0s20 = Real part of e%®
c0s20 e2i0
" 5+4sin® R.P of 5+4sin6
_ ) c0s20d0 de (ei%2dp
*. Given integral o) —————=R. P of 2“— = 2n 1
& '[ 5+4 0s0) Oj 5+4cos0H) I 5+4cos0) (1)

Put e =z so that dO= ; (for all examples it is same, so we remember this)

And cos@= - (z + l), Cislzl =
2 z

ZdZ

206d6
L0V — R.Ppofo2r 2L (69) O_R.p of of -

. 27 —
Then integral (1) becomeso| 5+4c050) 1400 54l (Z+ ))

ZdZ

=R. P of CIW (same as example of?" but only change is in N", extra term z?)
5+2

5+4cos0)

dz
z?2 z2 dz

2
=R. POfCJ.(STZzH)_R POfCIW=R-POf%CIi=%ij(Z)dZ ......... (2)

27245242

z z

2 2 2

z
222+45z+2  (2z+1)(z+2) 2(z+%)(z+2)

zZ zZ

Where f(z) =

(D"is having linear factors)

Clearly z = - i and z = - 2 are simple poles of f(z) for which z = - % lies inside the circle Izl=1
. 1
-~ calculate residue at z = - 5

If R1 is the residue of f(z) at pole z = - 2 (simple pole)

2 2
ThenR; = le_rr; (z+ —) f(z) = le_rri (z+ —) —2(Z+ T ar2) Z_l)l_rri i)
2 2
1
= 4 = 1 = —
2(-3+2)  8(3) 12
1
sRi= |
By C.R.of hm we have c] f(z)dz =2nIR, = Zni(i) = n—l --------------- (3)
Substitute (3) in (2) then given integral oF”%—R P.of —cff(z)dz = R. P.of —(m)
=R. P.of g = g (b’cz real part of real no. is itself)
Hence o}?" €0s20d9 _ = (answer should be in terms of real no. as integral is real)
5+4cos6 6

1+2cos0
9. Prove that o,f" *ocos

]60

Soln: In this example Nr is not constant it is a function of cos0, to solve example of this type
starting procedure is different



We have e'? = cosO +isin® .. 1+ 2e'® =(1+ 2cos0) +isin@ - 1+ 2cosO = R. P of (1+ 2e'9)

1+2cosO 142 el®
— =R.P of -
5+4sin0 5+4sin0
1+ 2cosBdo 1+ 2¢9d6
~ Given integral o/>* ———— = R. P of ¢* 1
& ol 5+4cos0) ol 5+4cos0) (1)

, d _ .
Put e =z so that do= i (for all examples it is same, so we remember this)

And cose=l (Z + l), Cislzl=1
2 z

i dz

. 1+ 2cosHdo 1+ 2¢i9d (1+22)==2
Then integral (1) becomesojzﬂL = R. P of oJ* e ' _R. pof ] —
5+4cos0) 5+4c0s6 (5+4; (z +E))

dz
(1+22)E

2
542 (z +1)
z

=R.Pofc|

dz
) 1+22)% (1+22)dz 1 (14+22)dz
=R. PofCIW-R- Pofcfm"‘- Pof el e

=R. Pof%cjf(z)dz ————————— (2)
(1+22) = @*22) _ 1
2z2+45z+2 @z+1)(z+2) (z+2)
Clearly z = - 2 are simple poles of f(z) for which lies outside the circle lzl=1
= By Cauchy’s Thm J f(z)dz =0
jz“ 1+2cose de

Where f(z) =

From (2) given integral is o =R. P.of %cff(z)dz = R. P.of %(0) =0

5+4coso
2, 1+ 2c0s6 dO _
Hence OI 5+4cos® 0
10.Using contour integration evaluate 0/ [cos30 / (5+4cos0)] dO (2017)
HOME work

10. Prove that of%" e cos(sin6-n@) d® = 2x/n! (2015)
Soln: This example is again little different
Let @ = (sinB-nB) then e cos(sinB-nB) = e>® cos a = R. P of €% (cos a+ i sin a)
=R. P of (ecoseeia )= R. P of (ecoseei(siné’—nﬂ)) =R. P of (ecoseeisine—inﬁ)
= R. P of (e0+ 0 g=in0 )= R p of g(¢'") g=iN0 =R Pp of (") (elf)r
Given Integral is of?™ © cos(sin0-n@) dO = R. P of of?" ') (ei¥)™ g —---nm (1)

. d .
Pute® =z sothatdo= f then integral (1) becomes

i ; _n dz
of?™ €00 cos(sinB-nB) dO = R. P of of" e (€ ) (e'%)™ do =R.P. of CI etz M P where

Cis unit circle Izl=1



dz 1 e?

on+1 - RP.ot o CI m dz (we have done example of this type)

R.P. of %J f(2)dz e 2)

Clearly z=0isa pole of order (n+1) which is inside the circle Izl =1 .

1
P
©
o
=

-R.P. of%J e?

Where f(z) = c

Zn+1

lim <= (z — 0)" f(2)

(n+1-1)! z—0 dz"

=L tim A
Tl Zh_%l dz"(z) (2"

If Ry is residue of f(z) at z= 0 then Ri=

1 .. an 1. 1

=— lim — e*=—lim e* =—

n! zog dz™" n! n!
z-0

-1
dz= 27i (Ry) = zm(i): 2:!1 (3)

~ By C.R.Thmc/f(2)dz = J
Then from (2) and (3) given integral becomes

o)™ €% cos(sin®-nB) dO = R. P of %Cj f(z)dz = R.Pof L™ -R. P of %

i n!

Zn+1

2T

= (b’cz real part of real is itself)

of2™ € cos(sinB-n0) dO ==

n!

This complets 2nd type of examples



lll. Evaluation of real integral of the type f_oow f(x)dx provided poles are not

real, i.e they are only in terms imaginary)

'\
dx cannot be solved as, pole is x= - 2 is real but example

ex

(x+2)2

(00
for example [__

ffooo ~_ dx can be solved as poles are x=12i, which are imaginary

x2+4
©  cosx

Similarly |

0 x2+2x+
To solve examples of these types we need one lemma, called Jordan’s Lemma

- dx can be solved as poles are x=—2 + i 2+/2, which are imaginary]
=

Statement for Jordan’s Lemma(lmportant for 2 marks): If f(z) -0 uniformly as Izl » oo (i.e

region tends to hole plane) then X lim cp| e™?f(z)dz =0 where Cr is denotes
Semi circle Izl = R, I(z)I>0
Procedure to solve example of this type :

Given integral ffooo f(x)dx steps are as follows

(i) Consider the integral as cj f(z)dz, just replace x by z and write the integral where Cis

closed contour consisting of upper half large circle Cr : 1zI=R and real line from —R to R

(Crdoes not look like C Cr Closed curve C contains two parts ,Cgr
semi circle, assume it Upper half of circle 1zI=R and real line
as semicircle) from —-R to R.
-R 2t R :
~ C=Cg+linefrom—-RtoR

(ii) Next for f(z), find poles and calculate residues at poles which lie inside C, let them be

(iii) By C.R. Theorem we have | f(z)dz = 2zl (sum of residues) =let it be some value K
i.ed f(z2)dz=K
i.e cpl f(2)dz + f_RRf(x)dx = K (b’cz C consisting two parts Crand real line from —R
to R)



(iv) Taking limit as R — oo on both sides, we get
. . (R .
Rllolon cgl f(2)dz + Rl_l)gl J_pf)dx = l"{%loo K
r lim cpf f(z)dz + ffooo f(x)dx =K ( b’cz limit of constant is constant)
fjooof(x)dx =K - Rlim crl f(2)dz and integral cgf f(z)dz in RHS
can be evaluated by Jordans Lemma or by any other method so that in all the

examples Rlilg cpl f(z)dz =0
[5 f@)dx =K-0
ie [7 f()dx=K and [ f(x)dx == [ f(x)dx=7

NOTE: This procedure is same for all examples of above type.

Examples: .

1. Prove that o/ 11?:2 = zi by contour integration (2015)
. . o dX

Soln: Given integral of T2

d
Consider the integral cff(z)dz =J TZZ , taken around the closed contour C consisting of upper
A

half large circle Cr : 1zI=R and real line from —R to R

Cr
C

1
1+2z2 - (z+i)(z-1)
Clearly Z=i, -i are simple poles of f(z) for which Z =i lies inside C (whereasz=-i=(0, -1) lies
lower part of z-plane but our region is only upper half of z-plane)
.".calculate residue at z=i
If Ry is the residue of f(z) at z =i then Ry = =;i_>rril(z —1) f(z)

Here f(z) =

1
(z+i)(z—-0)
=lim — =—
z—i (z+10) 2i

=lim(z — i)
Z—1

By C.R. Theorem we have ¢ f(2)dz = 2xi (R1)
ied f(z)dz=2mi—
e cpl f(2)dz + [ f(x)dx =n
Taking limit as R = oo on both sides, we get
. . (R :
Jlim gl f(2)dz + lim J_ f)dx = lim =

. lim cgl f(z)dz + ffooof(x)dx =n  (b’cz limit of constant is constant)



[2fGdx = - lim el f(2)dz

.o 1 _
e [[,— dx=n Jim CRJ — dz (1)
Consider | < cpl |—| ldz| = cg) —— = 2+1| |dz|
1 , 1
< CRJ FE= |dz| [b’cz |a+b|£|a|_|b| ]
= el 5 ldzl [b'cz [2] = R]
1
RZ_1 CRI |dZ|

RZ
Thus lim | =0
R-
R—o0o0
From (1) given mtegral becomes foo o dx =n -0=nm

1

i.e2 fooo — dx=n [b’czf f(x) dx=2
co 1 T
= fO 14x2 dx =E

c 1 T
" dx ==
J‘0 1+x2 2

Note: Above example can be solved even by using PUC integration, if the power of D" increases

01+

we cannot evaluate by our PUC integration, so in such cases contour integration is applicable.

2. Prove that .| (:’;2)2 —by contour integration. (2016, 2017) [in this example power of
D" is 2]
. . 0o X
Proof: Given integral of A2
Consider the integral Cff(z)dz = CI )2 , taken around the closed contour C consisting of
upper half large circle Cr : 1zI=R and reaI line from—-RtoR
C <
-R ol R
1 1 1
Here f(z) = 4222 (D@02 (242 (2-0)2
Clearly Z=i, -i are poles of f(z) of order 2 for which Z =i liesinside C (whereasz=-i=(0, -1) lies

lower part of z-plane but our region is only upper half of z-plane)
.".calculate residue at pole z=i (order is 2)

If Ry is the residue of f(z) at z=ithen Ry =

11m (Z —1)? f(2)

(2- 1)'



N2 1
lll? =D @+)? (2-0)2
- lim 1. -2 -2 -2 1

zoi dz (z+D)2 ;I_T (z+D)3  (20)3  -8i 4i
By C.R. Theorem we have ¢ f(z)dz = 2xi (R1)
e d f(2)dz =2ni-
e cpl f(z)dz + [* f(x)dx =2
Taking limit as R — oo on both sides, we get
. . R . V3
Rllolon cgl f(2)dz + Rl_l)gl J_pf)dx = l"{%loo 5
< lim cpf f(z)dz + ffooo fx)dx = f ( b’cz limit of constant is constant)

[Sfdx =7 - lim gl f(2)dz

i.e fjom(l'j%)z dx =§- lim | dxz)z dz (1)
Con5|der|chm dz| < cgl |m |dz| = cg] —— e 2+1)2 |dz|
< eal gz ld2 [b'et oS oy |
= el gz ldzl [bcz [2] = R]
= - 1)ZCRI |dz|
= ﬁ length of the semi circle Cr
=ﬁ(nR)—>0asR—>oo
Thus llm |cRI d | =0
=> llm cRI—)Zdz=0
From (1) given integral becomesf 00(1:7)2 dx =E” -0
o2 (o dx=l 2 [ 4]
g fooo(”lT)z dx =f

Note: In example (2) power of D" is 2, .. poles r of order 2 and hence according to that we have
to calculate residues and proceed.

3. Prove by contour integration that oj

2)3 dx =3n/8.
Soln: HOME work

Solve as above example, poles w get as order 3.



4. Evaluate by contour integration that o_[oo ;d;;z
Soln: Given integral I”—x

: gralo 14x2)2
Consider the integral c,ff(z)dz = cf )2 , taken around the closed contour C consisting of
upper half large circle Cr : 1zI=R and reaI line from—-RtoR

C
R
-R o R
2 ZZ ZZ

Here f(z) = (A+22)2  ((z+D)(z-D)2  (z+0)? (z—i)?
Clearly Z=i, -i are poles of f(z) of order 2 for which Z =i liesinside C (whereasz=-i=(0, -1) lies

lower part of z-plane but our region is only upper half of z-plane)
.".calculate residue at pole z=i (order is 2)

If Ry is the residue of f(z) at z=ithen Ry === !

1m (z —1)?%f(2)

(2- 1)'
2
—i2
;Lr? =@~ (Z+D? (2-D)2
- lim z - i 2z -2 -2 _ 1

z—1 dz (z+0)2 zl_r>ril (z+0)3  (20)3 -8i 4i
By C.R. Theorem we have ¢ f(z)dz = 2i (R1)
ied f(2)dz=2ni
e cpl f(2)dz +[* fo)dx =2
Taking limit as R — oo on both sides, we get
. . R . V4
Jim crl f(2)dz + Jim J_p f(x)dx = lim ~

x lim g f(2)dz +f°° f(x)dx =§ ( b’cz limit of constant is constant)

= f(x)dx = i’- hmcRI f(z)dz

i.e ffm% dx =§- llmcRI—z)2 dz (1)
Consider |ch(12%)2 dz| <cpl |—2)2 |dz| = cgf |( |dz|— crl (lZlﬂzl |dz|
< al g |2 nz 147l [b'ez o5 < oy |
= cRI s 1zl [bcz [2] = R]
(Rz 12 CRI |dz|

2
= _(Rzlil) > length of the semi circle Cr

(RZ o (tR) > 0asR — o (b’cz degree of N'< degree of D']



Thus llm |cRI dz| =0

=> Ilelm cRI dz 0
2 T
From (1) given integral becomesf mm dx =2 -0
. o X _ T _ [0} XZ _ il'
ie2 [ ey 4%=3 => [, a 4x =]

[o'e] XZ T
'fo (1+x2)2 it =5

d
4. Prove by contour integration that mj“x—xdx = /8a3 a>0

X2 dx
Soln: Given integral of @23
Consider the integral cff(z)dz = CJ —2)3 , taken around the closed contour C consisting of
upper half large circle Cr : IzI=R and real line from —R to R

C
Cr
R 3% R
Z2 Z2 Z2

Here f(z) =

(a?+22)3 - ((z+ai)(z—ai))3 - (z+ai)3 (z—ai)3

Clearly Z= ai, -ai are poles of f(z) of order 3 for which Z = ai lies inside C ( where asz=-ai =(0, -a)
(a>0 given), lies lower part of z-plane but our region is only upper half of z-plane)

.".calculate residue at pole z=ai (order is 3)

If Ry is the residue of f(z) at z = ai then R: = lim —(z — ai)? f(z)

3 1)' z—>a
l- N2 Z2
= 1mm —(zZ — al e eE——
z-ai dzz( ) (z+ai)3 (z—ai)3
1. d? 72 1. d 2iaz—z2
2! z5ai dz? (z+ai)3 2 z—ai dz (z+ai)*
- Y im 2z2-2a%—8iaz _ 1 4a? 1
2 z-ai (z+ai)s 2 32a%51 1e6a3i

By C.R. Theorem we have ¢/ f(z)dz = 2ni (R1)
i.ed f(z)dz=2mi o
i.e cpl f(2)dz +f f(xX)dx =——

8 a3
Taking limit as R — oo on both sides, we get

Jim cgl f(z)dz + Jim [5 F)dx = lim %

o 8a3




r lim cgf f(z)dz + ffooo f(x)dx = % ( b’cz limit of constant is constant)

Lo f(adx =55 - lim cql f(2)dz

e [7, 25 dx =75~ limc L")S (1)
Consider |ch % dz| <cpl | e |dz| -ch Idzl- cgl (lz|1)3| ldz|
< cgl ﬁ |dz| [b’cz laibl < Ial—llbl ]
= ch (RZ 53 |dz| [b’cz Izl =R]
(R2 1)3 cgl ldz|
= ﬁ length of the semi circle Cr
= % (tR) > 0asR — oo (b’cz degree of N'< degree of D']
Thus llm |cRI dz| =0
=> lim CRI—Z)SdZ= 0
From (1) given integral becomes | 00(1:7)3 dx = 8:3 -0= 8:3
foe) 2
. (117)2 dx = %
5. Prove that o~ m= % by contour integration. (2009, 2018)
Soln: Given integral ol Aﬁ
Consider the integral cIf(Z)dZ = m , taken around the closed contour C consisting of

upper half large circle Cg : 1zI=R and real line from —R to R

-R Pot R
1 1
Here f(z) = (22+1)(22+4)  (z+0)(z-0)(z+20)(z—20)
Clearly Z=i, -i, 2i, -2i are simple poles of f(z) for which Z=iand 2i liesinside C (whereasz=-i i.e

(0, -1) and z=-2i i.e (0, -2) lies in lower part of z-plane but our region is only upper
half of z-plane)

..calculate residue at z=i and 2i

If Ry is the residue of f(z) at z =i then Ry = Zli_)n}(z —1) f(z)



=lim(z — i) :

z—i (z+i)(z—i)(z+20)(z—-2i)
1
S D20 2i3)
Ry =+
17 6

If Rz is the residue of f(z) at z =2i then R1 == lirzn_(z — 2i) f(z)
Z—zal

. . 1
- legll (z - 21) (z+0) (z—0) (z+20) (z—20)
= hm 1 = 1 = 1
721 (z+20)(z+D)(z—i)  4i(-3) —12i
Ro= ——
>~ T12i

By C.R. Theorem we have o[ f(z)dz = 2xi (R1 + Ry)
ied f(z)dz = zm(é +—)

—12i
. R 2ni T
e cgl f(z)dz + [, f(x)dx = E =
Taking limit as R — oo on both sides, we get
. . R . b
Rllogn gl f(2)dz + Rl_l)g} Jopfdx = hgl_)oo .

. lim cg| f(z)dz + ffooof(x)dx =£ ( b’cz limit of constant is constant)

JofOdx =5 - lim cp] f(z)dz

. co 1 n . 1
-€ f—oo (x2+1)(x2+4) dx T 6 Rlirg crl (22+1)(22+4) dz (1)
1 1 1 1
i S S < - =cpl ——
Consider |C‘RI (22+1)(22+4) dzl _CRJ (z2+1)(z2+4)| ldz| CRJ |z2+1] |z2+4] |dz|
1 1 1
< _— ’ <
< &l Grmnanms 19 bz 1o = e r !
1 , _
= &l ey ldz [b'cz [2] = R]
1
~ (RZ-1)R2-4) crl ldzl

1 . .
(R—Dr?-3) length of the semi circle Cr
1

(tR)=>0asR—

Thus Rl_i)rorcl) |ch Dz dz| =0

=>I£i_r)rc}ocRIm dz =0
From (1) given integral becomes ffwm dx =£ -0 =£
i.e2 me dx = g [ b’cz f_aaf(x) dx = zfoa 1+1x2 dx as f(x)is even fuction]
=> foool— dx ==

(x24+1)(x2+4) 12



e dx =Z

0 (x2+1)(x%2+4) 12
o x2dx _ =z . .
6. Prove that of o)A - 200 by contour integration.
. . oo x2dx
Soln: Given integral of 219 E )

7z%dz

Consider the integral ] f(2)dz = 5 , taken around the closed contour C consisting of

(224+9)(z%+4)
upper half large circle Cr : IzI=R and real line from —R to R

-R 5o R

z% 7%

210 (2442 (2430)(z-30)(z—20)2(2+20)2

Clearly Z=3i, -3i are simple poles and z= 2i, -2i are poles of order 2 of f(z) for which Z=iand 2i lies
inside C (whereasz=-3ii.e(0,-3)andz=-2i i.e (0, -2) liesin lower part of z-plane
but our region is only upper half of z-plane)

.".calculate residue at z=3i and 2i

If Ry is the residue of f(z) at z =3i then R

Here f(z) = (

lir3n.(z —3i) f(z)  (b’czz=3iis simple pole)
Z—351

. . z?
- leg,ll (z = 31) (2+30)(z-31) (22 +4)2
_ 1 72 _ 9
= D442 6i(=5)2
Ry = —
T
. . o _ 1 . i Y
If Rz is the residue of f(z) at z =2i then R; = oD le)rgll dz(z 20)% f(z)
_ 1 i _ -\ 2 Z2
- legll dz(Z 21) (z+30)(z—30)(z—20)2(z+20)2

72

z—gli Z (z+3i)(z—3i)(z+2i)?
. d 72
zhgll dz [(z2+9)(z+zi)2 ]
4i{[5)4—i(z%+9)—z2(z+21)]

= 1
bt (2249)% (z420)°
R _4i[(5)(4D- 2i(5)-(-D)(4D)] _  4i(26Q) _
27 (5)2(4i)? T (25)(-64i)
13 _ 13
T 2000  200i

By C.R. Theorem we have ¢[ f(z)dz = 2xi (R1 + Ry)



. ] 13 1 n
l.e C_[f(Z)dZ = 27'“( E + E) = 27‘“( m): E

iecal f(2)dz +[° fx)dx = —

100
Taking limit as R = oo on both sides, we get

imeg] f(2)dz + lim [5 fedx = lim =

R—oo 100
. limcg| f(2)dz + fjooof(x)dx = 11(;_0 ( b’cz limit of constant is constant)
[ fGydx =325 - lim el f(2)dz
. o xz b . Z2
e | o, (x2+9)(x2+4)2 dx =155 - Rlirg cal (22+9) (22 +4)2 dz (1)
. z2 72 |z]? 1
_— < —_— =
Consider |CRI (22+9)(z%+4)? dZ| < cgl (22+9)(22 +4)2 |dz] = cgl 2249] |(z2+4)|° |dz|
|z|? ) 1
< <
B CRJ (1z12-9) (1z]*-4)? |dz| [b'cz la+b| ~ |al- |b] ]
R? ’
= cgl g e |4z [b’cz Izl = R]
R2
" (R2-9) (R2-4)? cal ldz]
2
= B9 (};2_4)2 length of the semi circle Cr
RZ

= wgmpz  (® R - 0 a R - o (degreeofRinNr <
degree of R in Dr)

72

Thus Rlir;} |CR,[ m dZ| =0
lim cg] —2—— d

= AW Crl g 2eaz #F T 0

. . o] xz T T
From (1) given integral becomes f_wm dx = o0 " 0= To0
e2 [T X gx = & [b'ez [* f(x) dx=2["—= dx as f(x)is even fuction]
’ 0 (x249)(x2+4)2 100 -a 0 14x2

o0 z2 7

= fo (X2 +9)(x2+4)2 dx =35

N __ dx =2

70 (x249)(x2+4)2 200
Examples where N' is in terms trigonometric function (These examples are also important)
7. Prove that OI“COSM

dx = 2% by contour integration.(2012)

(x2+1)
Soln: Given integral fooo EZ;T;) dx (starting procedure is little change)
We know that cosax = Real Part of (cosax + isinax) = R.P of e!®*

. cosax _
T (x2+1) ’ (x2+1)




lax

dx =R.P off dx (1)

foo cosax
*2+1)

0 (x2+41)

azd
Consider the integral Consider the integral JJ f(2)dz = %
z
contour C consisting of upper half large circle Cr : 1zI=R and real line from —R to R

, taken around the closed

iaz eiaz

Here f(z) = z2+1 - (z+i)(z=1)

Clearly Z=i, -i are simple poles of f(z) for which Z =i lies inside C (whereasz=-i=(0, -1) lies
lower part of z-plane but our region is only upper half of z-plane)

.".calculate residue at z=i

If Ry is the residue of f(z) at z =i then R1 = = lim(z — i) f(z)
Z—1

iaz

=lm -0 e
l elaZ _ g
- z—i (z+10) T2
By C.R. Theorem we have ¢ f(2)dz = 2xi (R1)
led f(z)dz=2mi "
i.ecgl f(2)dz + f_RRf(x)dx = e @
Taking limit as R — oo on both sides, we get
_ . (R : _
Rlloron gl f(2)dz + Rl—1>g>1 f_Rf(x)dx = hgl_mn e ?

. limcg| f(2)dz + ffooof(x)dx =ne”? ( b’cz limit of constant is constant)

I= f()dx =ne™@ - Rlirorg gl f(2)dz

o elax
i.e dx =ne ™ - limc dz 2
f—oo 1+x2 R—o0 RI 1+2z2 @)
iaz dZ
R—o0 +2z2

which is in the form of X llm CRI e™?f(z)dz where f(z) = 1+122

and  lim|f(2)| =

lzl> lzl>co 14272

=0

. iaz 1 . .
". by Jordan’s Lemma, llm cpl et Tioz (in these examples we r using J.Lemm)

tax

x =ne -0

From (2) we have [~

|e2foo

0 1+x2

iax
e -a

dx =rne

%2 0 1+



iax

oo e —
. dx =% ne ®
0 1+x2

cosax

From (1) given integral f dx =R.P.of (e ®)

=Y e ?
T
2e?
. foo cosax _ =z
0 1+x2 2e?

8. Prove that 0]~ cosmx dx /(a%+x?) = (r/2a)e™ , a,m>0 by contour integration.(2011, 13, 14)
HOME work: same as above example , in the place of x?+1 it is x?+a?, so poles are ai, -ai.

cosmx

)2

cosmx
(a?+x2)2

8. Prove that OI"" dx = 4“7 (1+ma)e™2 , a,m>0 by contour integration.

dx=RPof O] —2™ ax (1)

Soln: Given integral 0_[ @x2)?

Consider the integral Consider the integral cjf(z)dz = cj e taken around the closed

contour C consisting of upper half large circle Cr : 1zI=R and reaI line from—-RtoR

C R
-R So R
imz eimz eimz
Here f(Z) (a%+22) [(Z+ai)(z—ai)]2 " (z+ai)2(z-ai)?

Clearly Z=ai, -ai are poles of order 2 of f(z) for which Z = ai lies inside C ( where as z = -ai = (0, -a)
lies lower part of z-plane ( b’cz a>0) but our region is only upper half of z-plane)
.".calculate residue at z=ai

If R1is the residue of f(z) at z =ai then R1 ==

lim (z —ai)? f(z)

(2 1)' z—ai

- i ( )2 eimz

m —(z —ail e —
zoai dz (z+ai)2(z—ai)?

e imz

zlial dz (z+ai)?

(z+ai)? e™MZ(im)— ™22 (z+ia)
z—ai (z+ai)*
(z+ia)e™Z(im)— eiMmz 2

z—ai (z+ai)3

1l
—
jen

]




_ e "(2ia(im)-2) _

—-2e "M (am+1)

R1

(2ai)3

-8i(a)3

e "M(gm+1)
4i(a)3

By C.R. Theorem we have ¢ f(2)dz = 2xi (R1)
e d f(2)dz = 2ni E—emtD)

4i(a)3
. R e "M(am+1)
e el f(dz + L fodx =25
Taking limit as R — oo on both sides, we get
Jimeg] f(Z)dz + lim [7 f()dx = lim ==

T

limeg] f(2)dz + [7 f(0)dx =

e "M(gm+1)
2(a)3

( b’cz limit of constant is constant)

[ fGadx = - lim eyl f(2)dz
. o eimx _ me”(am+1) m
ie [° s = s Jim crl = —+Zz)z dz (2)
Consider lim crl = T) dz = lim cgl €™m* (az+122)2 dz

which is in the form of

. Imlf )

". by Jordan’s Lemma,

1

2
(a®+2%)

and lim
lzl> o0

. 1
limc etm?
00 ) (a2+72)°
imx

ne” M (am+1)

o lim crl €™ f(z)dz where f(z) = i

czf f(x) dx = 2f0

1
27

+22)

(in these examples we r using J.Lemm)
-0

= > dx as f(x)is even fuction]

elmx ne” MM (am+1)

From (2) we have foom dx = O
. o eimx _ ne” M (am+1)
l. e 2 0 (a2+x2)2 - 2((1)3
. foo eimx _ ne” " (am+1)
Y (0L2+x2)2 - 4(a)3
o . o cosmx
From (1) given integral || ) dx = R.P.of fo
_ ne”(am+1)
4(a)3
. foo cosmx e~ (am+1)
Yo (az+x2)2 - 4(a)3
COoSX
In above example, particularly (i) if m= 1thenf0 (2—)2
cosmx

(i) if a= 1thenf 27

(iii) If m=1 and a= 1thenf

ﬁ dx =R.P. of ( 2(a) )
_ ne"%a+1)
T 4(a)d
_ me”"M(m+1)
- 4
cosx ne~12
) dx = 2 = ;



9. Prove that 0f” xzslm;)d = ”a a,>0 bycontourintegration.

o XSiNX
Soln: Now integral —OOI

dx Imaginary Part of oof dx [b’cz of sinx]

d
Consider the integral Consider the integral JJ f(2)dz = CJ % taken around the closed
a

contour C consisting of upper half large circle Cr : 1zI=R and real line from —R to R

elz zel?
Here f(z) = 2+a2 (z+ai)(Z—ai)

Clearly Z=ai, -ai are simple poles of f(z) for which Z = ai lies inside C ( where as z = -ai = (0, -a) lies

lower part of z-plane but our region is only upper half of z-plane)
.".calculate residue at z=ai

If Ry is the residue of f(z) at z =ai then R1 =

=Zli_)ni1(z —ai) f(z)

ze?
B ZIEE (Z B al) (z+ai)(z—ai)
. zel? iae ® e @
= IIm = =
z—ai (z+ai) 2ia 2
By C.R. Theorem we have J f(2)dz = 2xi (R1)
e f(z)dz =21 & =ine™®
iecal f(2)dz + [* f(x)dx =ine™®
Taking limit as R — oo on both sides, we get
imeg] f(2)dz + lim S5 Fodx = lim izee

. limcg| f(2)dz + ffooof(x)dx =ine™?® ( b’cz limit of constant is constant)

fjooof(x)dx = ine”® - lirorol gl f(2)dz

. oo xe'* . _a
e [, dx=ine”® - Jim CRJ a2 dz

(2)

Consider llm ch dz = hm che

which is in the form of r llm CRI e‘mzf(z)dz where f(z) =
and  lim|f(z)| = lim — =0

lzl> lzl>co 14272

". by Jordan’s Lemma,

iz

elx

-] —-a
o y21q2 dx =ire ™ -0

From (2) we have [



x sinx

~.integral [~ —  dx=1P.of 2

eix _ i _a
7 dx =1.P.of (inte™®)

=ne ¢ [ b’cz imaginary part of imaginary no. is itself]

T
e

i.e2 foo;:j:; dx =el“ czf f(x) dx = Zfaxsmx dx as f(x)is even fuction]

oo xsinx —
Jo o7 dx=Yime™®
xsinx
given integral f T dx=——

3k 3k 3k 3k 3k 3k %k >k 3k 5k %k >k 3k 5k >k >k 3k 5%k 3%k %k >k 3k 5k %k >k 3k %k %k >k 5%k >k %k >k 5%k >k >k >k 5k 5%k %k >k 3k %k %k >k 5k >k %k 3k 5k >k >k 3k 5%k 3%k %k >k 3k 5%k %k >k 3k 5%k %k >k 5%k >k %k >k 5% %k %k >k %k %k %k %k %k *k k

(iv)



