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Some more examples on poles: 

Note: If Nr is polynomial function or sinz or cosz or ez and Dr is polynomial function then 

power of linear factors of Dr gives order of pole. 

Eg. Find poles of f(z) =
𝒛

(𝒛−𝟏)(𝒛−𝟐)𝟐
 

Clearly z=1 is pole of order 1 i.e simple pole and z=2 is a pole of order 2. 

Eg. Find poles of f(z) =
𝒛𝒆𝒛

(𝒛−𝟐)(𝒛𝟐−𝟓𝒛+𝟔)
 = 

𝒛𝒆𝒛

(𝒛−𝟐[(𝒛−𝟐)(𝒛−𝟑)]
 = 

𝒛𝒆𝒛

(𝒛−𝟐)𝟐(𝒛−𝟑)
 

Clearly z=3 is pole of order 1 i.e simple pole and z=2 is a pole of order 2. 

Eg. Find poles of f(z) =
𝒆𝒛

𝒛(𝒛+𝟒)𝟑(𝒛−𝟑)𝟒
  

Clearly z=0 simple pole, z=-4 is pole of order 3 and z=3 is a pole of order 4. 

Eg. Find poles of f(z) =
𝒛

(𝒛𝟐+𝒛+𝟏)
 = 

𝒛

(𝒛−𝜶)(𝒛−𝜷)
  where 𝜶 = 

−𝟏+√𝟏−𝟒

𝟐
 = 

−𝟏+𝒊√𝟑

𝟐
  

                                                                                   & 𝜷 = 
−𝟏−𝒊√𝟑

𝟐
 

Clearly z= 𝛼, 𝛽 are simple poles 

Theorem: Zeros of  analytic function are isolated 

                (i.e if z=a is zero of f(z) then it has no other zeros other than a in the nhd. of z=a) 

Proof: Let f(z) be analytic and z=a be zero of the function f(z) of order m then by the 

definition f(z) = (z-a)m (∅(𝑧)) where ∅(𝑎)  ≠ 0 . 

i.e ∅(𝑧) is analytic and non zero in the neighbourhood of z=a. Also (z-a)m≠ 0 for all values 

z≠ a 



Thus there exists no other points in the neighbourhood of z=a at which f(z) =0 

Hence the zero z=a is isolated. It is true for all zeros of f(z). 

 zeros of f(z) are isolated. 

Theorem: poles of  function are isolated. 

(i.e if z=a is pole of f(z) then it has no other poles other than a in the nhd. of z=a) 

Proof: Let z=a be a pole of order m of f(z), then by definition of pole principal part of f(z) in 

the  Laurent’s expansion have m no. of terms. 

i.e f(z) =  ∑ 𝑎𝑛
∞
𝑛=0 (𝑧 − 𝑎)𝑛 + 

𝑏1

(𝑧−𝑎)
 + 

𝑏2

(𝑧−𝑎)2
 + 

𝑏3

(𝑧−𝑎)3
 +---------------------

𝑏𝑚

(𝑧−𝑎)𝑚
 

i.e  f(z) =  ∑ 𝑎𝑛
∞
𝑛=0 (𝑧 − 𝑎)𝑛 + 

𝑏𝑚

(𝑧−𝑎)𝑚
+

𝑏𝑚−1

(𝑧−𝑎)𝑚−1
 + − − − − −

𝑏2

(𝑧−𝑎)2
 + 

𝑏1

(𝑧−𝑎)
 (reverse order) 

i.e f(z) = 
1

(𝑧−𝑎)𝑚
  [∑ 𝑎𝑛

∞
𝑛=0 (𝑧 − 𝑎)𝑛+𝑚 + bm + 𝑏𝑚−1(z-a) + 𝑏𝑚−2(z-a)2+--------------+b1(z-a)m-1] 

        = 1

(𝑧−𝑎)𝑚
 ∅(𝑧) ------------------(1) 

where ∅(𝑧) = [(∑ 𝑎𝑛

∞

𝑛=0
(𝑧 − 𝑎)𝑛+𝑚

) + bm + 𝑏𝑚−1(z-a) + 𝑏𝑚−2(z-a)2+---------+b1(z-a)m-1] 
Clearly ∅(𝑧) does not tend to infinity for any finite value of z as powers of (z-a) are positive. 

 There is no other pole  in the nhd. of z=a. 

 from (1), f(z) has only the pole z=a and no other poles in the nhd. of z=a. 

Thus poles of f(z) are isolated. 

 

Note: Both theorems are important 

 

 

 

 

 

 

 

 

 

 



 

Unit IV 

Definition of residue, Cauchy’s Residue Theorem and Counter Integration 

Definition of Residue (important for 2 marks): Let f(z) be analytic and z=a be a pole of f(z) of 

order m inside closed curve C then by Lauernt’s Theorem we have  

f(z) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 ∞
𝑛=0 + b1 

1

(𝑧−𝑎)
 + b2  

1

(𝑧−𝑎)2
 + ----------+ bm  

1

(𝑧−𝑎)𝑚
 where  

bm = 
1

2𝜋𝑖
 ∫

𝑓(𝑧)

(𝑧−𝑎)−𝑚+1
𝑑𝑧

𝑐
 

Here particularly b1 = 
𝟏

𝟐𝝅𝒊
 ∫

𝑓(𝑧)

(𝑧−𝑎)−1+1
𝒅𝒛

𝒄
 = 

𝟏

𝟐𝝅𝒊
 ∫ 𝒇(𝒛) 𝒅𝒛

𝒄
 is called residue of the function 

f(z) at a pole z=a.( i.e coefficient of 
1

(𝑧−𝑎)
  in the Prin. Part, i.e the term left after + ve power) 

Note: Residues are usually denoted by R1 , R2, ------- 

For example: If f(z)= 
𝑧

(𝑧−1)(𝑧−3)2  , clearly z=1 is a pole of order 1 (simple pole) and z=3 is a 

pole of order 2  

By using partial fraction we have f(z) = 
1

4(𝑧−1)
  - 

1

4(𝑧−3)
 + 

3

2(𝑧−3)2
 , here coefficient of 

1

(𝑧−1)
 is 

1

4
  

and coefficient of 
1

(𝑧−3)
 is 

− 1

4
      

∴ residue of f(z) at z=1 is R1 =  
𝟏

𝟒
    and residue of f(z) at z=3 is R2 =  −

𝟏

𝟒
     

Calculation of residues: 

Calculation of residue by using above partial fraction method is tedious if more factors are 

there in Dr. So there are easy methods to calculate residues. 

(i) Calculation of residue of f(z)  at simple pole (pole of order 1): If z =a is a pole of 

f(z)  of order 1 then by  Laurent’s Theorem we have  

f(z) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 ∞
𝑛=0 + b1 

1

(𝑧−𝑎)
 

Multiplying throughout by (z-a) , we get 

(z-a) f(z) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛+1 ∞
𝑛=0 + b1 

Taking the limit as z→a on both the sides we get  

lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧)= lim
𝑧→𝑎

∑ 𝑎𝑛(𝑧 − 𝑎)𝑛+1 ∞
𝑛=0 + b1 

i.e lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 0 +b1  => b1 = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) 



Thus if z =a is a pole of f(z)  of order 1(simple pole) then residue of f(z) is 

obtained by R1 = 𝐥𝐢𝐦
𝒛→𝒂

(𝒛 − 𝒂)𝒇(𝒛)  

(ii) Calculation of residue of  f(z)  at pole of order m :  

Above method is not applicable if z=a is pole of order more than 1 

Thm.  (Important for 5 marks) : Prove that z=a be a pole of f(z) of order m then 

residue of f(z) at z=a is R1 = 
𝟏

(𝒎−𝟏)!
 𝐥𝐢𝐦

𝒛→𝒂
 

𝒅𝒎−𝟏

𝒅𝒛𝒎−𝟏
 ((𝒛 − 𝒂)𝒎 f(z). 

Proof: Let z=a be a pole of f(z) of order m , then  

f(z) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 ∞
𝑛=0 + b1 

1

(𝑧−𝑎)
 + b2  

1

(𝑧−𝑎)2
 + ----------+ bm  

1

(𝑧−𝑎)𝑚 

=
1

(𝑧−𝑎)𝑚
[∑ 𝑎𝑛(𝑧 − 𝑎)𝑛+𝑚 ∞

𝑛=0 + b1(𝑧 − 𝑎)𝑚−1  + b2(𝑧 − 𝑎)𝑚−2 +------ bm] 

=  
1

(𝑧−𝑎)𝑚 ∅(𝑧)  

where ∅(𝑧)= ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛+𝑚 ∞
𝑛=0 + b1(𝑧 − 𝑎)𝑚−1 + b2(𝑧 − 𝑎)𝑚−2 +------ bm 

∴f(z) = 
∅(𝑧)

(𝑧−𝑎)𝑚
 ---------------------------(1)   where ∅(𝑧) is analytic at z=a. 

By the definition of residue of f(z) we have b1 = 
1

2𝜋𝑖
 ∫ 𝑓(𝑧) 𝑑𝑧

𝑐
  

= 
1

2𝜋𝑖
 ∫

∅(𝑧)

(𝑧−𝑎)𝑚
 𝑑𝑧

𝑐
   = 

1

(𝑚−1)!
 ∅𝑚−1(𝑎)   by C. I. formula for nth derivative . 

                                    = 
1

(𝑚−1)!
 lim
𝑧→𝑎

 ∅𝑚−1(𝑧)   = 
1

(𝑚−1)!
 lim
𝑧→𝑎

  
𝑑𝑚−1

𝑑𝑧𝑚−1
  (∅(𝑧)) 

                                                                            = 
1

(𝑚−1)!
 lim
𝑧→𝑎

  
𝑑𝑚−1

𝑑𝑧𝑚−1
  (𝑧 − 𝑎)𝑚𝑓(𝑧) 

                                                                                                                       From (1) 

                          

Thus residue of f(z) at pole z=a of order m is  

R1 = 
𝟏

(𝒎−𝟏)!
 𝐥𝐢𝐦

𝒛→𝒂
 

𝒅𝒎−𝟏

𝒅𝒛𝒎−𝟏
 ((𝒛 − 𝒂)𝒎 f(z). 

 

Note: Sometimes residue of  f(z) at pole z=a is also written as Res.(f,a) 

Examples on calculation of residues: 

1. Find the residue of f(z)  = 
𝒛

𝒛𝟐−𝟏
  at z=1                (2017) 

Soln.: Now  f(z)  = 
𝑧

𝑧2−1
    = 

𝑧

(𝑧−1)(𝑧+1)
 

Clearly z =1 and z=-1 are poles of order 1, ie simple poles 

If R1 is residue of f(z) at z=1  then   R1 =   lim
𝑧→1

(z − 1) f(z) =  lim
𝑧→1

(z − 1) f(z)  

                                                                    =  lim
𝑧→1

(z − 1)
𝑧

(𝑧−1)(𝑧+1)
 = 

1

2
 

∴ R1 =
1

2
  is a residue at 1. 

 

 

 

 

 



 

2. Find the residue of f(z)  = 
𝒆𝒛

( 𝒛𝟐+𝟏)𝟐
   at z=i                          (2017) 

Soln.: Now  f(z)  = 
𝑒𝑧

( 𝑧2+1)2
       = 

𝑒𝑧

(𝑧+𝑖)2(𝑧 − 𝑖)2
    

Clearly z =i and z= -i are poles of order 2 

 If R1 is residue of f(z) at z=i  then   R1 =  
1

(2−1)!
  lim

𝑧→𝑖  

𝑑

𝑑𝑧
(z − i)2 f(z)  

                                                                  = lim
𝑧→𝑖  

𝑑

𝑑𝑧
(z − i)2  

𝑒𝑧

(𝑧+𝑖)2(𝑧 − 𝑖)2
  

                                           =  lim
𝑧→𝑖 

𝑑

𝑑𝑧

𝑒𝑧

(𝑧+ 𝑖)2
 = lim

𝑧→𝑖 
 
(𝑧+ 𝑖)2𝑒𝑧− 2(𝑧−𝑖)𝑒𝑧

(𝑧 +𝑖)4
 = lim

𝑧→𝑖 
 
(𝑧+𝑖)𝑒𝑧− 2𝑒𝑧

(𝑧+𝑖)3
  

                                                                       

∴ R1 =
2(𝑖−1)𝑒𝑖

−8𝑖
  =  

𝑖(𝑖−1)𝑒𝑖

4
 is a residue at i.  

 

3. Find the residue of f(z)  = 
𝒛𝟒

𝒛𝟐   + 𝒂𝟐
   at all its poles.                        (2016) 

Soln.: Now  f(z)  =
𝑧4

𝑧2   + 𝑎2
    = 

𝑧4

(𝑧−𝑎𝑖)(𝑧+𝑎𝑖)
 

Clearly z =ai and z=-ai  are poles of order 1, ie simple poles 

If R1 is residue of f(z) at z=ai  then   R1 =   lim
𝑧→𝑎𝑖

(z − ai) f(z) =  lim
𝑧→𝑎𝑖

(z − ai) f(z)  

                                                                    =  lim
𝑧→𝑎𝑖

(z − ai)
𝑧4

(𝑧−𝑎𝑖)(𝑧+𝑎𝑖)
 = 

𝑎3

2𝑖
 

∴ R1 =
𝑎3

2𝑖
  is a residue at z = ai. 

If R2 is residue of f(z) at z= - ai  then   R2 =   lim
𝑧→ −𝑎𝑖

(z + ai) f(z) =  lim
𝑧→−𝑎𝑖

(z + ai) f(z)  

                                                                    =  lim
𝑧→ −𝑎𝑖

(z + ai)
𝑧4

(𝑧−𝑎𝑖)(𝑧+𝑎𝑖)
 = 

𝑎3

−2𝑖
 

∴ R2 =− 
𝑎3

2𝑖
  is a residue at z = - ai. 

HOME work 

5. Find the residue of f(z)  = 
2𝑧+3

(𝑧−1)(𝑧−2)
   at z=2                    (2016) 

6. Find the residue of f(z)  = 
𝒛

𝒛𝟐   + 𝟏
   at  its all poles            (2015)  

  

7. Find the residue of f(z)  = 
𝒛

(𝒛−𝟏)(𝒛−𝟐)
   at z=2                    (2014) 

8. Find the residues of f(z) = z/(z2+1) at its poles                (2015) 

HOME work 

9. Find the residues of f(z) = 
𝟐𝒛+𝟑

(𝒛−𝟏)(𝒛−𝟐)
     at z=2             (2013, 2016) 

Soln.: Now  f(z)  =
2𝑧+3

(𝑧−1)(𝑧−2)
    Clearly z =1 and z=2  are poles of order 1, ie simple poles 

If R1 is residue of f(z) at z=2  then   R1 =   lim
𝑧→2

(z − 2) f(z) =  lim
𝑧→2

(z − 2)
2𝑧+3

(𝑧−1)(𝑧−2)
 = 

7

1
 



∴ R1 =7  is a residue at z= 2. 

 

10. Find the residues of f(z) = 
𝒆𝒛

𝒛(𝒛−𝟏)𝟐
   at z=0                  (2013)     

Soln.: Now  f(z)  =
𝒆𝒛

𝒛(𝒛−𝟏)𝟐
    Clearly z =0 is simple pole  and z=1 is   pole of order 2. 

If R1 is residue of f(z) at z=0 then   R1 =   lim
𝑧→0

(z − 0) f(z) =  lim
𝑧→0

(z)
𝒆𝒛

𝒛(𝒛−𝟏)𝟐
 = 

1

1
 

∴ R1 =1   is a residue at z= 0. 

Cauchy’s Residue Theorem (Compulsory question for 5 marks) 

Statement: Let f(z) be analytic within and on closed contour C except at finite no. of poles z1, z2, 

z3, -----------zn inside C then  c𝒇(𝒛)𝒅𝒛   dz  = 2𝝅i(R1 +R2  + R3 +-------------------------Rn)  = 2𝝅i( sum of 

residues at these poles inside C ) 

 where R1, R2 , R3-------------------Rn are residues at poles z1, z2, z3, -----------zn resply.  

 

Proof: By hypothesis  z1, z2, z3, -----------zn poles of f(z) inside C. Therefore function f(z) is not analytic 

at these points in side C. Hence construct small circles  𝛾1, 𝛾2, 𝛾3, ---------------------------------𝛾𝑛 

around these points then f(z) is analytic in the  egion bounded by closed curves C, 𝛾1, 𝛾2, 𝛾3, - -------

--------------------  , 𝛾𝑛                                                                                                                                              

                                                         By Cauchy’s  theorem for multi connected region  we have  

 

                                                        c𝑓(𝑧)𝑑𝑧   =  𝛾1 𝑓(𝑧)𝑑𝑧  +  𝛾2 𝑓(𝑧)𝑑𝑧    + ------- 𝛾𝑛 𝑓(𝑧)𝑑𝑧  ---(1)        

                                                                                                                                                                    

______________(1) 

                                                              By definition of residue of f(z) we have  

                                           R 1  = 
1

2𝜋i
    𝛾1 𝑓(𝑧)𝑑𝑧  where 𝛾1 is circle around the pole z1 and R1 is res. 

                                                                          ∴ 𝛾1 𝑓(𝑧)𝑑𝑧  = 2𝜋i R1 

 

Similarly   𝛾2 𝑓(𝑧)𝑑𝑧  = 2𝜋i R2 ,  𝛾3 𝑓(𝑧)𝑑𝑧  = 2𝜋i R3 ,       ----------------𝛾𝑛 𝑓(𝑧)𝑑𝑧  = 2𝜋i Rn 

Then (1) becomes , c𝑓(𝑧)𝑑𝑧   = 2𝜋i R1 + 2𝜋i R2 + 2𝜋i R3 +-------------------2𝜋i Rn  

                                                        = 2𝜋i ( R1  +  R2 +  R3 +-------------------Rn) 

                                                        = 2𝜋i (sum of residues at these poles inside C) 

Thus  if f(z) be analytic within and on closed contour C except at finite no. of poles z1, z2, z3, ---------

--zn inside C then  

    

    c𝒇(𝒛)𝒅𝒛   dz  = 2𝝅i(R1 +R2  + R3 +--------------  Rn)  = 2𝝅i( sum of residues at these poles inside C )         

                                                                                                                                                                                                             

 where R1, R2 , R3-------------------Rn are residues at poles z1, z2, z3, -----------zn resply.  

Z1 

Z2 

Zn 

Z3 

𝛾1 𝛾2 
𝛾n C 



Hence the proof   

Evaluation of integrals using C.R. Theorem: 

We are going to solve three types of examples using C.R. theorem 

(i) c𝑓(𝑧)𝑑𝑧   where C is closed curve 

(ii) ∫ f(sinθ, cosθ)dθ
2π

0
 

(iii) ∫ f(x)dx
∞

−∞
     or ∫ f(x)dx

∞

0
 

 

Evaluation of Examples on type (i): c𝒇(𝒛)𝒅𝒛   where C is closed curve 

We already solved this type of examples by Cauchy’s integral formula, but by usingC. R. theorem 

easily we evaluate. 

Procedure:  1. Consider f(z), find poles and their orders. 

                       2. See which poles are inside C 

                       3. Calculate residues at these poles by calculation of residues method 

                       4. Apply C. R. thm  c 𝑓(𝑧)𝑑𝑧   dz  =  2𝜋i( sum of residues at these poles inside C ) 

1.Evaluate  c
𝒔𝒊𝒏𝒛

(𝒛−𝝅)𝟑
   dz  where C; lzl =4                               (2016)  

Soln.: Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝑠𝑖𝑛𝑧

(𝑧−𝜋)3
 dz  where   f(z)  =

𝑠𝑖𝑛𝑧

(𝑧−𝜋)3
    Clearly z =𝜋 is a   

pole of order 3 which is inside the circle lzl =4 . 

If R1 is residue of f(z) at z= 𝜋 then   R1 =  
1

(3−1)!
  lim

𝑧→𝜋  

𝑑2

𝑑𝑧2
(z − 𝜋)3 f(z)  

                                                                  =
1

2!
  lim

𝑧→𝜋  

𝑑2

𝑑𝑧2
(z − 𝜋)3  

𝑠𝑖𝑛𝑧

(𝑧−𝜋)3
  

                                                                    =  lim
𝑧→𝜋  

𝑑2

𝑑𝑧2
 𝑠𝑖𝑛𝑧 = lim

𝑧→𝜋  
 (−𝑠𝑖𝑛𝑧) = 0 

                                                                     = 0 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝑠𝑖𝑛𝑧

(𝑧−𝜋)3
 dz   =  2𝜋i (R1) =  2𝜋i(0 )= 0 

2.Evaluate  c   dz    over closed contour C.             (2014, 2015) 

Soln: Given integral  c  f(z)  dz   =  c   dz  where f(z) =1 which is analytic every where. 

∴ By Cauchy’s Thm c   dz = 0.  

3. Evaluate  c    
𝒛

𝒛𝟐+𝟐𝒛−𝟑
  dz where C is lzl = 2     (2017) 

Soln.: Now given intergal c𝑓(𝑧)𝑑𝑧 =    c 
𝒛

𝒛𝟐+𝟐𝒛−𝟑
 dz  where   f(z)  =

𝒛

𝒛𝟐+𝟐𝒛−𝟑
 =  

𝒛

(𝒛−𝟏)(𝒛+𝟑)
     

Clearly z =1 𝑎𝑛𝑑 − 3  are simple poles of f(z) for which z=1 is inside the circle lzl =2 . 

∴We have to calculate residue only at z=1. 

If R1 is residue of f(z) at z=1  then   R1 =   lim
𝑧→1

(z − 1) f(z) =  lim
𝑧→1

(z − 1) f(z)  

                                                                    =  lim
𝑧→1

(z − 1)
𝑧

(𝑧−1)(𝑧+3)
 = 

1

4
 

∴ R1 =
1

4
  is a residue at 1. 

Real integrals 

 



 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝒛

𝒛𝟐+𝟐𝒛−𝟑
 dz   =  2𝜋i (R1) =  2𝜋i(

1

4
 )= 

𝜋 i

2
 

 

4. Prove that c    
𝒆𝒛

𝒛𝒏+𝟏
   dz =

𝟐𝝅 𝐢

𝒏!
   where C is lzl = 2 . 

Soln.: Now given integral c𝑓(𝑧)𝑑𝑧 =    c
𝒆𝒛

𝒛𝒏+𝟏
 dz  where   f(z)  =

𝒆𝒛

𝒛𝒏+𝟏
    Clearly z =0 is a   pole of 

order (n+1) which is inside the circle lzl =2 . 

If R1 is residue of f(z) at z= 0 then   R1 =  
1

(𝑛+1−1)!
  lim

𝑧→0  

𝑑𝑛

𝑑𝑧𝑛
(z − 0)n f(z)  

                                                                   =
1

𝑛!
  lim

𝑧→0  

𝑑𝑛

𝑑𝑧𝑛
(z)n  

𝒆𝒛

(𝑧)𝑛
  

                                                                    = 
1

𝑛!
 lim
𝑧→𝜋  

𝑑𝑛

𝑑𝑧𝑛
 𝒆𝒛 = 

1

𝑛!
lim

𝑧→0  

 𝒆𝒛 = 
1

𝑛!
 

                                                                      

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c    
𝒆𝒛

𝒛𝒏+𝟏
   dz =  2𝜋i (R1) =  2𝜋i(

1

𝑛!
)=  

2𝜋i

𝑛!
 

5. Evaluate c z3/(z +1) dz if c is lzl = 2 

Soln: Now given intergal c𝑓(𝑧)𝑑𝑧 =    c 
𝒛𝟑

𝒛+𝟏
 dz  where   f(z)  = 

𝒛𝟑

𝒛+𝟏
     

Clearly z =−1 𝑖𝑠  simple pole of f(z) which  is inside the circle lzl =2 . 

∴We have to calculate residue only at z= - 1. 

If R1 is residue of f(z) at z= -1  then   R1 =   lim
𝑧→ −1

(z + 1) f(z) = lim
𝑧→−1

(z + 1)
𝒛𝟑

𝒛+𝟏
   = −1 

                                                                    =   

∴ R1 =−1   is a residue at -1. 

 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝒛𝟑

𝒛+𝟏
 dz   =  2𝜋i (R1) =  2𝜋i(−1 )= -2𝜋i 

 

6. Evaluate c dz/(z-2)   if c is lz-2l = 4                          (2016) 

7. Evaluate   c  dz/z(z2+4)  if c is lzl = 1     

Try 6 and 7 as exercise. 

8. Obtain residues of f(z) =  
𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
 at all singularities and hence evaluate cf(z) dz where c is lzl = 2   

Soln:    Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
 dz  where   f(z)  =

𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
    Clearly z =0 is a   

pole of order 1 and  z =1 pole of order 2, both are inside the circle lzl =2 . 

If R1 is residue of f(z) at pole  z= 0 then   R1 =lim
𝑧→ 0

(z) f(z) = lim
𝑧→0

(z)
𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
   = lim

𝑧→0

𝒄𝒐𝒔𝒛

(𝒛−𝟏)𝟐
   =  1 

∴ R1 =1     

If  R2 is residue of f(z) at pole z= 1 then   R2  =   
1

(2−1)!
  lim

𝑧→1 

𝑑

𝑑𝑧
(z − 1)2 f(z)  

                                                                             =
1

2!
  lim

𝑧→1  

𝑑

𝑑𝑧
(z − 1)2  

𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
  



                                                            =  lim
𝑧→1  

𝑑

𝑑𝑧
 [  

𝒄𝒐𝒔𝒛

𝒛
]  = lim

𝑧→1  
[
𝒛 (–𝒔𝒊𝒏𝒛)− 𝒄𝒐𝒔𝒛 (𝟏)

𝒛𝟐
  = -(sin1 +cos1) 

                                                         

                                                       R2 = -(sin1+cos1) 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝒄𝒐𝒔𝒛

𝒛(𝒛−𝟏)𝟐
 dz   =  2𝜋i (R1 + R2) =  2𝜋i(1+sin1 +cos1). 

     

9.Evaluate c z/[(z2+1)(z2-9)] dz where c is the circle lzl = 2    

Soln:    Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝒛

(𝒛𝟐+𝟏)(𝒛𝟐−𝟗)
 dz  where   f(z)  =

𝒛

(𝒛𝟐+𝟏)(𝒛𝟐−𝟗)
 = 

𝒛

(𝒛+𝒊)(𝒛−𝒊)(𝒛+𝟑)(𝒛−𝟑)
   and C is circle lzl=2  

Clearly z =𝑖 , −𝑖, 3, −3  simple   poles for which z= 𝑖 , −𝑖  lie inside the circle C.  

∴ we have to calculate residues only at these two poles. 

If R1 is residue of f(z) at pole  z= 𝑖  then   R1=lim
𝑧→ 𝑖

(z − i) f(z)        

=        lim
𝑧→𝑖

(z − i)
𝒛

(𝒛+𝒊)(𝒛−𝒊)(𝒛+𝟑)(𝒛−𝟑)
   

                                                    = lim
𝑧→𝑖

𝒛

(𝒛+𝒊)(𝒛𝟐−𝟗)
  = 

𝑖

(2𝑖)(−10)
 = 

1

−20
 

∴ R1 =− 
1

20
     

If  R2 is residue of f(z) at pole z= −𝑖  then   R2  =    lim
𝑧→− 𝑖

(z + i)f(z) 

                                                                                 = lim
𝑧→−𝑖

(z + i)
𝒛

(𝒛+𝒊)(𝒛−𝒊)(𝒛+𝟑)(𝒛−𝟑)
   

                                                                                 = lim
𝑧→−𝑖

𝒛

(𝒛−𝒊)(𝒛𝟐−𝟗)
  = 

−𝑖

(−2𝑖)(−10)
 = −

1

20
 

∴ R2 =−
1

20
     

                                                         

       ∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝒛

(𝒛𝟐+𝟏)(𝒛𝟐−𝟗)
 dz   =  2𝜋i (R1 + R2) =  2𝜋i(− 

1

20
−  

1

20
) )= - 

𝜋i

5
 

  

10. Evaluate c dz/[z2(z+4)]  where c is the circle lzl = 5 

Soln:    Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟏

𝒛𝟐(𝒛+𝟒)
 dz  where   f(z)  =

𝟏

𝒛𝟐(𝒛+𝟒)
    Clearly z =0 is a   

pole of order 2 and  z =-4 is simple  pole both are inside the circle lzl =5 . 

If R1 is residue of f(z) at pole  z= 0 then   R1 =   
1

(2−1)!
  lim

𝑧→0 

𝑑

𝑑𝑧
z2 f(z)  

                                                                             =
1

2!
  lim

𝑧→0  

𝑑

𝑑𝑧
z2  

𝟏

𝒛𝟐(𝒛+𝟒)
  

                                                                    =  lim
𝑧→0  

𝑑

𝑑𝑧
 [  

𝟏

𝒛+𝟒
]  = lim

𝑧→0  
[ -  

1

(𝑧+4)2
 ] = - 

𝟏

𝟏𝟔
 

∴ R1 =−
𝟏

𝟏𝟔
     



 

If R2 is a residue of f(z) at simple  pole z= - 4 then R2 =  lim
𝑧→ −4

(z + 4) f(z)  

                                                                                             = lim
𝑧→−4 

(z + 4)
𝟏

𝒛𝟐(𝒛+𝟒)
                     

                                                                                            = lim
𝑧→−4

 
𝟏

𝒛𝟐
   = 

𝟏

𝟏𝟔
  

∴ R2 =
𝟏

𝟏𝟔
     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟏

𝒛𝟐(𝒛+𝟒)
 dz   =  2𝜋i (R1+R2) =  2𝜋i(

−𝟏

𝟏𝟔
+

𝟏

𝟏𝟔
 )= 0 

11. Evaluate c z dz/[(z+i)(9-z2)] dz where c is the circle lzl = 2  (2014) 

Exercise 

Soln: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. Evaluate c (2z+1)/(z2+z-6) dz  where c is the circle lzl = 4   (2008) 

Soln:    Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟐𝒛+𝟏

𝒛𝟐+𝒛−𝟔
 dz  where   f(z)  =

𝟐𝒛+𝟏

𝒛𝟐+𝒛−𝟔
 = 

𝟐𝒛+𝟏

(𝒛+𝟑)(𝒛−𝟐)
    Clearly 

z =−3 𝑎𝑛𝑑 𝑧 = 2 𝑎𝑟𝑒  simple  poles and  both lie inside the circle lzl =4 . 

If R1 is residue of f(z) at pole  z= −3  then   R1 =    lim
𝑧→ −3

(z + 3) f(z)  

                                                                                = lim
𝑧→−3 

(z + 3)
𝟐𝒛+𝟏

(𝒛+𝟑)(𝒛−𝟐)
                     

                                                                                = lim
𝑧→−3

 
𝟐𝒛+𝟏

(𝒛−𝟐)
   =  

−𝟓

−𝟓
   = 1    

∴ R1 =𝟏     



If R2 is a residue of f(z) at simple  pole z= 2  then R2 = lim
𝑧→ 2

(z − 2) f(z)  

                                                                                          = lim
𝑧→2 

(z − 2)
𝟐𝒛+𝟏

(𝒛+𝟑)(𝒛−𝟐)
                     

                                                                                          = lim
𝑧→2

 
𝟐𝒛+𝟏

(𝒛+𝟑)
   = 

𝟓

𝟓
  = 1 

∴ R2 =𝟏     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟐𝒛+𝟏

𝒛𝟐+𝒛−𝟔
 dz   =  2𝜋i (R1+R2) =  2𝜋i(𝟏 + 𝟏 )= 4𝜋i 

 13. Evaluate c (2z+1)/(z-2)(z+3)(z+1) dz  where c is the circle lzl = 5/2 

Soln:    Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟐𝒛+𝟏

(𝒛−𝟐)(𝒛+𝟑)(𝒛+𝟏)
 dz  where   f(z)  =

𝟐𝒛+𝟏

(𝒛−𝟐)(𝒛+𝟑)(𝒛+𝟏)
 and 

C is lzl = 
5

2
  Clearly z =−3 , 𝑧 = 2 𝑎𝑛𝑑 𝑧 = −1 𝑎𝑟𝑒  simple  poles for which z=2 and -1  lie 

inside the circle lzl =
5

2
  . 

If R1 is residue of f(z) at pole  z= −1  then   R1 =    lim
𝑧→ −1

(z + 1) f(z)  

                                                                                 = lim
𝑧→−1 

(z + 1)
𝟐𝒛+𝟏

(𝒛+𝟑)(𝒛−𝟐)(𝒛+𝟏)
                     

                                                                             R1 = lim
𝑧→−1

 
𝟐𝒛+𝟏

(𝒛−𝟐)(𝒛+𝟑)
   =  

−𝟏

−𝟔
   = 

𝟏

𝟔
 

If R2 is a residue of f(z) at simple  pole z= 2  then R2 = lim
𝑧→ 2

(z − 2) f(z)  

                                                                                            = lim
𝑧→2 

(z − 2)
𝟐𝒛+𝟏

(𝒛+𝟑)(𝒛−𝟐)(𝒛+𝟏)
                     

                                                                                             = lim
𝑧→2

 
𝟐𝒛+𝟏

(𝒛+𝟑(𝒛+𝟏))
   =

𝟓

𝟏𝟓
  = 

𝟏

𝟓
 

∴ R1 =
𝟏

𝟔
    and R2 =

𝟏

𝟓
     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟐𝒛+𝟏

(𝒛−𝟐)(𝒛+𝟑)(𝒛+𝟏)
 dz   =  2𝜋i (R1+R2) =  2𝜋i(

𝟏

𝟔
+

𝟏

𝟓
 )= 2𝜋i (

𝟏𝟏

𝟑𝟎
) = (

𝟏𝟏𝜋i

𝟏𝟓
) 

 

14. Evaluate (i) c dz/[z(z2+4)]  where c is the circle lzl = 5   (ii) c
𝒛𝟐−𝟒

𝒛(𝒛𝟐+𝟗)
  dz  where C; lzl =1 (2015) 

Soln:  (i)   Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟏

𝒛(𝒛𝟐+𝟒)
 dz  where   f(z)  =

𝟏

𝒛(𝒛𝟐+𝟒)
=  

𝟏

𝒛(𝒛+𝟐𝒊)(𝒛−𝟐𝒊)
 

and C is lzl = 5  Clearly z =0 , 𝑧 = 2𝑖 𝑎𝑛𝑑 𝑧 = −2𝑖 𝑎𝑟𝑒  simple  poles and all  lie inside the 

circle lzl = 5  . 

∴ we have to calculate residues at all these poles.  

If R1 is residue of f(z) at pole  z= 0  then   R1 =    lim
𝑧→ 0

z f(z) = lim
𝑧→0 

z 
𝟏

𝒛(𝒛𝟐+𝟒)
                     

                                                                                                              = lim
𝑧→0

 
𝟏

(𝒛𝟐+𝟒)
   =  

𝟏

𝟒
    

∴ R1 = 
𝟏

𝟒
     

If R2 is a residue of f(z) at simple  pole z= 2i  then R2 =  lim
𝑧→ 2𝑖

(z − 2i) f(z)  

                                                                                            = lim
𝑧→2𝑖 

(z − 2i)
𝟏

𝒛(𝒛+𝟐𝒊)(𝒛−𝟐𝒊)
             



                                                                                             = lim
𝑧→2𝑖

 
𝟏

𝒛(𝒛+𝟐𝒊)
   =

𝟏

−𝟖
   

∴ R2 = −
𝟏

𝟖
     

If R3 is a residue of f(z) at simple  pole z= 2i  then R3 =  lim
𝑧→ −2𝑖

(z + 2i) f(z)  

                                                                                      = lim
𝑧→−2𝑖 

(z + 2i)
𝟏

𝒛(𝒛+𝟐𝒊)(𝒛−𝟐𝒊)
                     

                                                                                                                                       

                                                                                       = lim
𝑧→−2𝑖

 
𝟏

𝒛(𝒛−𝟐𝒊)
   = 

𝟏

−𝟖
   

∴ R3 = −
𝟏

𝟖
     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟏

𝒛(𝒛𝟐+𝟒)
 dz   =  2𝜋i (R1+R2  + R3) =  2𝜋i(

𝟏

𝟒
−

𝟏

𝟖
−

𝟏

𝟖
 )= 2𝜋i (𝟎) = 𝟎 

 

    (ii)   Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝒛𝟐−𝟒

𝒛(𝒛𝟐+𝟗)
 dz  where   f(z)  =

𝒛𝟐−𝟒

𝒛(𝒛𝟐+𝟗)
=  

𝒛𝟐−𝟒

𝒛(𝒛+𝟑𝒊)(𝒛−𝟑𝒊)
 and C 

is lzl = 1  Clearly z =0 , 𝑧 = 3𝑖 𝑎𝑛𝑑 𝑧 = −3𝑖 𝑎𝑟𝑒  simple  poles for which only z=0 lie inside 

the circle lzl = 1  . 

∴ we have to calculate residues at all the pole z=0.  

If R1 is residue of f(z) at pole  z= 0  then   R1 =    lim
𝑧→ 0

z f(z) = lim
𝑧→0 

z 
𝒛𝟐−𝟒

𝒛(𝒛𝟐+𝟗)
                     

                                                                                                              = lim
𝑧→0

 
−𝟒

(𝒛𝟐+𝟗)
   =  

𝟏

𝟗
    

∴ R1 = 
−𝟒

𝟗
     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝒛𝟐−𝟒

𝒛(𝒛𝟐+𝟗)
 dz   =  2𝜋i (R1) =  2𝜋i(

−𝟒

𝟗
 )= 

−𝟖

𝟗
𝜋i  

 

(iv) c
𝟏−𝟐𝒛

𝒛(𝒛−𝟏)(𝒛−𝟐)
  dz  where C; lzl =3 (2011, 2015, 2016)  

(v)  (iv) c
𝟑𝒛−𝟏

(𝒛𝟑− 𝒛)
  dz  where C; lzl =2 (2015) 

      (v) c
𝒅𝒛

𝒛𝟑(𝒛−𝟏)
    where C; lzl =2 (2012, 2015)   

Try above three example as exercise  

 

(vi)  c
𝒅𝒛

(𝟒𝒛𝟐−𝟗)
  where C;(a)  lzl =I    (b) lz-1l =1 (2014, 2016)  

Soln:  (a)   Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟏

(𝟒𝒛𝟐−𝟗)
 dz  where   f(z)  =

𝟏

(𝟒𝒛𝟐−𝟗)
=  

𝟏

(𝟐𝒛+𝟑)(𝟐𝒛−𝟑)
 

and C is lzl = 1  Clearly   𝑧 =
−3

2
 𝑎𝑛𝑑 𝑧 =

3

2
 𝑎𝑟𝑒  simple  poles and both lie outside the circle 

lzl=1  . 

∴ function is analytic inside C and hence by Cauchy’s Theorem  c𝑓(𝑧)𝑑𝑧= 0 

Z=0 
1 

3/2   -3/2 



(b) Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟏

(𝟒𝒛𝟐−𝟗)
 dz  where   f(z)  =

𝟏

(𝟒𝒛𝟐−𝟗)
=  

𝟏

(𝟐𝒛+𝟑)(𝟐𝒛−𝟑)
 

=
𝟏

𝟒(𝒛+
3

2
)(𝒛−

3

2
)
  

and C is lz-1l = 1   

Clearly   𝑧 =
−3

2
 𝑎𝑛𝑑 𝑧 =

3

2
 𝑎𝑟𝑒  simple  poles of f(z) for which z =

3

2
 lie inside the circle lz-1l=1    

 [ distance between 
−𝟑

𝟐
  and centre (1,0) is √(

−𝟑

𝟐
− 𝟏)𝟐  = 

𝟓

𝟐
 >radius 1, ∴ z=

−𝟑

𝟐
 lies outside C] 

∴ we have to calculate residues at all the pole z=
3

2
.  

If  R1 is residue of f(z) at pole  z= 
3

2
 then   R1 =    lim

𝑧→ 
3

2
 
( z −

3

2
) f(z)  

                                                                              =  lim
𝑧→ 

3

2
 
( z −

3

2
) 

𝟏

𝟒(𝒛+
3

2
)(𝒛−

3

2
)
                  

                                                                              =  lim
𝑧→ 

3

2
 
 

𝟏

𝟒(𝒛+
3

2
)
   =  

𝟏

𝟏𝟐
    

∴ R1 = 
𝟏

𝟏𝟐
     

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟏

(𝟒𝒛𝟐−𝟗)
 dz   =  2𝜋i (R1) =  2𝜋i(

𝟏

𝟏𝟐
 )= 

𝟏

𝟔
𝜋i  

 

  HOME WORK   

    (vii)  c
𝒛+𝟒

𝒛𝟐+𝟐𝒛+𝟓
  dz  where C; lz+I l =2    (2017)     (viii) c

𝒛+𝟒

𝒛𝟐(𝒛−𝟏)
  dz  where C; lz l =3            (2018)   

    (viii) Prove that   ) c
𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
  dz   = 6𝝅𝒊 where C; lz l =4            (2018)   

Proof: Now given intergal c𝑓(𝑧)𝑑𝑧 =    c
𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
 dz  where   f(z)  =

𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
 and C is lzl = 4  

Clearly   𝑧 = 3 𝑎𝑛𝑑 𝑧 = −1 𝑎𝑟𝑒  simple  poles and both lie intside the circle lzl=4  . 

∴ we have to calculate residues at all the pole z=3 and 1 both.  

If  R1 is residue of f(z) at pole  z= 3 then   R1 =    lim
𝑧→ 3 

( z − 3) f(z)  

                                                                              =  lim
𝑧→ 3 

( z − 3) 
𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
                  

                                                                              =  lim
𝑧→ 3 

 
𝟑𝒛−𝟏

(𝒛+𝟏)
   =  

𝟖

𝟒
   = 2 

∴ R1 = 𝟐     

If  R2 is residue of f(z) at pole  z= −1 then   R1 =    lim
𝑧→ −1 

( z + 1) f(z)  

                                                                              =  lim
𝑧→ −1 

( z + 1) 
𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
                  

                                                                              =  lim
𝑧→ −1 

 
𝟑𝒛−𝟏

(𝒛−𝟑)
   =  

−𝟒

−𝟒
   = 1 

∴ R2 =1     

 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c
𝟑𝒛−𝟏

(𝒛−𝟑)(𝒛+𝟏)
 dz   =  2𝜋i (R1+R2) =  2𝜋i(𝟐 + 𝟏 )= 𝟔𝜋i  

Z=1 

1 
  

3

/

2 

3/2 



 

15. Find residues of f(z) =
𝟏

𝒛(𝒛𝟐𝟑𝒛+𝟐)
  at  z= 0, 1 and  -2   and hence evaluate c f(z) dz where c :lzl  = 3. 

Soln: 

 

 

 

 

 

II. Evaluation of real integral of the type ∫ 𝒇(𝒔𝒊𝒏𝜽, 𝒄𝒐𝒔𝜽)𝒅𝜽
𝟐𝝅

𝟎
 

Contour Integration: Evaluation of integral of above type by our usual real 

integral is sometimes tedious, hence in such cases we  reduce  above integral  to  

c𝑓(𝑧)𝑑𝑧 taken around the closed contour C, and thus is called contour integration.  

 

[In PUC , we already come across the examples of the type ∫
𝟏

𝒂+𝒃𝒄𝒐𝒔
𝒅𝜽

𝟐𝝅

𝟎
 , ∫

𝟏

𝒂+𝒃𝒔𝒊𝒏
𝒅𝜽

𝟐𝝅

𝟎
 etc.  

Such type of examples can be solved easily using contour integration.] 

Procedure for evaluation above integral: 

Consider given integral ∫ 𝒇(𝒔𝒊𝒏𝜽, 𝒄𝒐𝒔𝜽)𝒅𝜽
𝟐𝝅

𝟎
-------------------(1) 

Take substitution ei  = z  so that e- i  = 
𝟏

𝒛
 and cos=

𝟏

𝟐
 (z + 

𝟏

𝒛
) and sin= 

𝟏

𝟐𝒊
 (z - 

𝟏

𝒛
) 

and also ei i d = dz =>  d= 
𝒅𝒛

𝒊 𝒆𝒊
 = 

𝒅𝒛

𝒊 𝒛
  

∴ d=  
𝒅𝒛

𝒊 𝒛
  and  =0 to 2 is for circle C : lzl =1 

By all these substitution (1) becomes 

∫ 𝒇(𝒔𝒊𝒏𝜽, 𝒄𝒐𝒔𝜽)𝒅𝜽
𝟐𝝅

𝟎
= c𝑓 (

𝟏

𝟐
 (𝐳 +  

𝟏

𝒛
) ,

𝟏

𝟐𝒊
 (𝐳 −  

𝟏

𝒛
)) 𝑑𝑧 

                                                  = c𝑓(𝑧)𝑑𝑧 , anyhow terms inside the brocket are functions of z. 

 

And the integral c𝑓(𝑧)𝑑𝑧 can be evaluated by C.R. theorem as in previous examples taken around 

unit circle C:  lzl =1 

NOTE: For the examples of above type this substitution is fixed and is C is also always unit circle 

lzl=1. 

Examples:(compulsory one example for 5 marks) 

(i) If Nr is constant  and Dr either in terms of sin or cos 

 

1. Using contour integration , evaluate     02 
𝐝

𝟓+𝟒𝐜𝐨𝐬
                        (2014, 2015, 2018)   



Soln: Given integral 02 
d

5+4cos)
  -----------------(1)                       

Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

And  cos= 
1

2
 (z +  

1

𝑧
), C is lzl =1 

Then integral (1)  becomes 02 
d

5+4cos
 = c 

𝑑𝑧

𝑖𝑧

(5+4
1

2
 (z + 

1

𝑧
))

 = c 
𝑑𝑧

𝑖𝑧

5+2 ( 
𝑧2+1

𝑧
)
 

                                                                       = c 
𝑑𝑧

𝑖𝑧

 ( 
5𝑧+2𝑧2+2

𝑧
)
 = c 

𝑑𝑧

 iz( 
5𝑧+2𝑧2+2

𝑧
)
 

                                                                       = 
1

𝑖
 c 

𝑑𝑧

 2z2+5z+2
 = 

1

𝑖
 c 𝑓(𝑧)𝑑𝑧  ---------(2) 

Where f(z) = 
1

 2z2+5z+2
 = 

1

 (2z+1)(z+2)
 = 

1

 2(z+
1

2
)(z+2)

 (Dr is having linear factors) 

Clearly z = - 
1

2
 and z = - 2 are simple poles of f(z) for which z = - 

1

2
 lies inside the circle lzl=1 

∴ calculate residue at z = - 
1

2
  

If R1 is the residue of f(z) at pole z = - 
1

2
 (simple pole) 

Then R1 =    lim
𝑧→− 

1

2
  
( z +  

1

2
) f(z) =  lim

𝑧→− 
1

2
  
( z +  

1

2
)

1

 2(z+
1

2
)(z+2)

 =  lim
𝑧→− 

1

2
  

1

 2(z+2)
 

                                                                              = 
1

 2(− 
1

2
 +2)

= 
1

 2( 
3

2
 )
 = 

𝟏

𝟑
                                          

∴ R1 = 
𝟏

𝟑
    

By C.R. Thm we have c 𝑓(𝑧)𝑑𝑧  =2I R1 = 2i(
𝟏

𝟑
)---------------(3)  

Substitute (3)  in  (2) then  given integral 02 
d

5+4cos
 = 

1

𝑖
 c 𝑓(𝑧)𝑑𝑧  = 

1

𝑖
 (

2i

3
) = 

2

3
 

Hence 02 
d

5+4cos
 = 

2

3
  (answer should be in terms of real no. as integral is real)   

(Same procedure for examples of these types) 

2. Using contour integration prove that 02 d/ (a+bcos)  = 2/a2-b2 where lbl<a. (2012) 

Soln: Given integral 02 
d

𝑎+bcos
  -----------------(1)                       

Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

and cos= 
1

2
 (z +  

1

𝑧
), C is lzl =1 

Then integral (1)  becomes 02 
d

𝑎+bcos
 = c 

𝑑𝑧

𝑖𝑧

𝑎+b
1

2
 (z + 

1

𝑧
))

 = c 
𝑑𝑧

𝑖𝑧

𝑎+b ( 
𝑧2+1

2𝑧
)
 

                                                                       = c 
𝑑𝑧

𝑖𝑧

 ( 
2𝑎𝑧+𝑏𝑧2+𝑏

2𝑧
)
 = c 

𝑑𝑧

 iz( 
2𝑎𝑧+𝑏𝑧2+𝑏

2𝑧
)
 

                                                                       = 
2

𝑖
 c 

𝑑𝑧

 bz2+2az+b
 = 

2

𝑖
 c 𝑓(𝑧)𝑑𝑧  ---------(2) 



Where f(z) = 
1

 bz2+2az+b
 = 

1

 b (z2+2 
a

b 
z+1)

 = 
1

 b(z−α)(z−β)
 (Dr is general eqn. so  let the factors be in 

general ) where α = 
−2

a 

b
 + √(2

a 

b
)2−4 

2
 = 

−2
a 

b
 + √(2

a 

b
)2−4 

2
  = 

−2𝑎+√4𝑎2−4𝑏2 

2𝑏
 = 

−𝑎+√𝑎2−𝑏2 

𝑏
 

                          & β = 
−𝑎−√𝑎2−𝑏2 

𝑏
  ( b’cz irrational roots occur in conjugate pairs)  

[ these roots are obtained by formula x = 
−𝑏+√𝑏2−4𝑎𝑐 

2𝑎
 method, for factors of this type we use 

the same procedure] 

Clearly z = α and z = β are simple poles of f(z) for which z = α lies inside the circle lzl=1 

[b’cz in the example it is given that lbl<a, ∴ |
−𝑎+√𝑎2−𝑏2 

𝑏
| <1 , i.e |α| < 1 𝑖. 𝑒 distance between 

α and centre is < 1, 𝑏𝑢𝑡 | β | > 1    as  |
−𝑎−√𝑎2−𝑏2 

𝑏
| > 1 ] 

∴ calculate residue at z = α 

If R1 is the residue of f(z) at pole z = α (simple pole) 

Then R1 =    lim
𝑧→α  

( z − α) f(z) =  lim
𝑧→α  

( z − α)
1

 b(z−α)(z−β)
 =  lim

𝑧→α  

1

 b(z−β)
                                                                              

= 
1

b (α−β)
= 

1

 b (
2√𝑎2−𝑏2 

𝑏
)

 = 
𝟏

𝟐√𝑎2−𝑏2
                                          

∴ R1 = 
𝟏

𝟐√𝑎2−𝑏2
  

By C.R. Thm we have c 𝑓(𝑧)𝑑𝑧  =2I R1 = 2i
𝟏

𝟐√𝑎2−𝑏2
  = 

𝒊

√𝑎2−𝑏2
 --------(3) 

            Substitute (3)  in  (2) then  given integral 02 
d

𝑎+bcos
 = 

2

𝑖
 c 𝑓(𝑧)𝑑𝑧  = 

2

𝑖
 (

𝒊

√𝑎2−𝑏2
 ) =            

                                                                                                                                   = 
𝟐

√𝑎2−𝑏2
 

Hence 02 
𝐝

𝒂+𝐛𝐜𝐨𝐬
 = 

𝟐

√𝒂𝟐−𝒃𝟐
  (answer should be in terms of real no. as integral is real) 

[ In first example if we put a=5, b= 4, we get answer 02 
𝐝

𝟓+𝟒𝐜𝐨𝐬
 = 

𝟐

√𝟓𝟐−𝟒𝟐
 = 

𝟐

𝟑
 which is true] 

 

3. Using contour integration prove that 0 d/ (a+cos)  = /a2-1 where a>1. 

Soln: Given integral 02 
d

𝑎+cos
  -----------------(1)                       

      Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

     and cos= 
1

2
 (z +  

1

𝑧
), C is lzl =1 

            Then integral (1)  becomes 02 
d

𝑎+cos
 = c 

𝑑𝑧

𝑖𝑧

𝑎+
1

2
 (z + 

1

𝑧
))

 = c 
𝑑𝑧

𝑖𝑧

𝑎+ ( 
𝑧2+1

2𝑧
)
 

                                                                       = c 
𝑑𝑧

𝑖𝑧

 ( 
2𝑎𝑧+𝑧2+1

2𝑧
)
 = c 

𝑑𝑧

 iz( 
𝑎𝑧+𝑧2+1

2𝑧
)
 



                                                                       = 
2

𝑖
 c 

𝑑𝑧

 z2+2az+1
 = 

2

𝑖
 c 𝑓(𝑧)𝑑𝑧  ---------(2) 

Where f(z) = 
1

 z2+2az+1
 = 

1

  (z2+2 az+1)
 = 

1

 (z−α)(z−β)
 (Dr is general eqn. so  let the factors be in 

general ) where α = 
−2a + √(2a)2−4 

2
 = 

−2a + √(2a)2−4 

2
  = 

−2𝑎+√4𝑎2−4 

2
 = −𝑎 + √𝑎2 − 1 

                          & β = −𝑎 − √𝑎2 − 1  ( b’cz irrational roots occur in conjugate pairs)  

[ these roots are obtained by formula x = 
−𝑏+√𝑏2−4𝑎𝑐 

2𝑎
 method, for factors of this type we 

use the same procedure] 

Clearly z = α and z = β are simple poles of f(z) for which z = α lies inside the circle lzl=1 

[b’cz in the example it is given that 1<a, ∴ |
−𝑎+√𝑎2−1 

1
| <1 , i.e |α| < 1 𝑖. 𝑒 distance between 

α and centre is < 1, 𝑏𝑢𝑡 | β | > 1    as  |
−𝑎−√𝑎2−1 

1
| > 1 ] 

∴ calculate residue at z = α 

If R1 is the residue of f(z) at pole z = α (simple pole) 

Then R1 =    lim
𝑧→α  

( z − α) f(z) =  lim
𝑧→α  

( z − α)
1

 (z−α)(z−β)
 =  lim

𝑧→α  

1

 (z−β)
                                                                              

= 
1

 (α−β)
= 

𝟏

𝟐√𝑎2−1
                                          

∴ R1 = 
𝟏

𝟐√𝑎2−1
  

By C.R. Thm we have c 𝑓(𝑧)𝑑𝑧  =2I R1 = 2i
𝟏

𝟐√𝑎2−1
  = 

𝒊

√𝑎2−1
 --------(3) 

             Substitute (3)  in  (2) then  given integral 02 
d

𝑎+cos
 = 

2

𝑖
 c 𝑓(𝑧)𝑑𝑧  = 

2

𝑖
 (

𝒊

√𝑎2−1
 )            

                                                                                                                   = 
𝟐

√𝑎2−𝑏2
 

Hence 02 
𝐝

𝒂+𝐜𝐨𝐬
 = 

𝟐

√𝒂𝟐−𝟏
   

[Same as example (2), in the place of b we have to put b=1] 

 

4.  Using contour integration prove that 02 d/ (1+acos)  = 2/1-a2 where lal<1. 

5. Using contour integration prove that 02 d/ (2+cos)  = 2/3   (2013, 2015) 

HOME work (same as above examples, only values a and b are different) 

6. Evaluate 02 d/ (a+bsin)  by contour integration where lal <1 

Soln: Given integral 02 
d

𝑎+bsin
  -----------------(1)                       

Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

and sin= 
1

2𝑖
 (z −  

1

𝑧
), C is lzl =1 

Then integral (1)  becomes 02 
d

𝑎+bsin
 = c 

𝑑𝑧

𝑖𝑧

𝑎+b
1

2𝑖
 (z− 

1

𝑧
))

 = c 
𝑑𝑧

𝑖𝑧

𝑎+b ( 
𝑧2−1

2𝑖𝑧
)
 



                                                                       = c 
𝑑𝑧

𝑖𝑧

 ( 
2𝑎𝑖𝑧+𝑏𝑧2−𝑏

2𝑖𝑧
)
 = c 

𝑑𝑧

 iz( 
2𝑎𝑖𝑧+𝑏𝑧2−𝑏

𝑖2𝑧
)
 

                                                                       = 2 c 
𝑑𝑧

 bz2+2aiz−b
 = 2 c 𝑓(𝑧)𝑑𝑧  ---------(2) 

Where f(z) = 
1

 bz2+2aiz−b
 = 

1

 b (z2+2 
ai

b 
z−1)

 = 
1

 b(z−α)(z−β)
 (Dr is general eqn. so  let the factors be in 

general ) where α = 
−2

ai 

b
 + √(2

ai 

b
)2+4 

2
 = 

−2
a 

b
 + √(2

ai 

b
)2+4 

2
  = 

−2𝑖𝑎+√4(𝑎𝑖)2+4𝑏2 

2𝑏
 = 

−2𝑖𝑎+2𝑖√𝑎2−𝑏2 

2𝑏
 

                          =  i  
−𝑎+√𝑎2−𝑏2 

𝑏
  ( b’cz irrational roots occur in conjugate pairs)  

                   & 𝛽=  i  
−𝑎−√𝑎2−𝑏2 

𝑏
  

[ these roots are obtained by formula x = 
−𝑏+√𝑏2−4𝑎𝑐 

2𝑎
 method, for factors of this type we use 

the same procedure] 

Clearly z = α and z = β are simple poles of f(z) for which z = α lies inside the circle lzl=1 

[b’cz in the example it is given that lbl<a, ∴ |
−𝑎+√𝑎2−𝑏2 

𝑏
| <1 , i.e |α| < 1 𝑖. 𝑒 distance between 

α and centre is < 1, 𝑏𝑢𝑡 | β | > 1    as  |
−𝑎−√𝑎2−𝑏2 

𝑏
| > 1   and lil=1] 

∴ calculate residue at z = α 

If R1 is the residue of f(z) at pole z = α (simple pole) 

Then R1 =    lim
𝑧→α  

( z − α) f(z) =  lim
𝑧→α  

( z − α)
1

 b(z−α)(z−β)
 =  lim

𝑧→α  

1

 b(z−β)
                                                                              

= 
1

b (α−β)
= 

1

 b (
2𝑖√𝑎2−𝑏2 

𝑏
)

 = 
𝟏

𝟐𝒊√𝑎2−𝑏2
                                          

∴ R1 = 
𝟏

𝟐𝒊√𝑎2−𝑏2
  

By C.R. Thm we have c 𝑓(𝑧)𝑑𝑧  =2I R1 = 2i
𝟏

𝟐𝒊√𝑎2−𝑏2
  = 



√𝑎2−𝑏2
 --------(3) 

            Substitute (3)  in  (2) then  given integral 02 
d

𝑎+bsin
 = 2 c 𝑓(𝑧)𝑑𝑧  = 2 (



√𝑎2−𝑏2
 ) =            

                                                                                                                                   = 
𝟐

√𝑎2−𝑏2
 

Hence 02 
𝐝

𝒂+𝐛𝐬𝐢𝐧
 = 

𝟐

√𝒂𝟐−𝒃𝟐
  (answer should be in terms of real no. as integral is real) 

7.  Evaluate 02 
𝐝

𝟓

𝟒
+𝐬𝐢𝐧

                     or   2 
𝟒𝐝

𝟓+𝟒𝐬𝐢𝐧
                                                 (2009) 

Soln: In above example put a =
𝟓

𝟒
,  b = 1,  we get 02 

𝐝
𝟓

𝟒
+𝐬𝐢𝐧

  = 
𝟐

√(
𝟓

𝟒
)

2
−12

  = 
𝟐

√
𝟗

𝟏𝟔

 = 
𝟖

𝟑
 

Try it as home work 

8. Using contour integration prove that 02 [cos2 / (5+4cos)] d  = /6. 



Soln: In this example Nr is not constant it is a function of cos, to solve example of this type starting 

procedure is different 

We have e2i  = cos2 +isin2            ∴ cos2 = Real part of e2i  

                                                             ∴
𝐜𝐨𝐬𝟐

𝟓+𝟒𝐬𝐢𝐧
   = R.P of 

e2i

𝟓+𝟒𝐬𝐢𝐧
    

∴ Given integral 02 
𝐜𝐨𝐬𝟐d

5+4cos)
 = R. P of 02 

e2id

5+4cos)
 = R. P of 02 

(𝑒𝑖)2d

5+4cos)
-----------------(1)                       

Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

And  cos= 
1

2
 (z +  

1

𝑧
), C is lzl =1 

Then integral (1)  becomes02 
𝐜𝐨𝐬𝟐d

5+4cos)
=  R. P of 02 

(𝑒𝑖)
2

d

5+4cos
 = R. P of c 

 𝑧2  𝑑𝑧

𝑖𝑧

(5+4
1

2
 (z + 

1

𝑧
))

  

= R. P of c 
 𝑧2  𝑑𝑧

𝑖𝑧

5+2 ( 
𝑧2+1

𝑧
)
  (same as example 02 

d

5+4cos)
 but only change is in Nr , extra term z2) 

                                                                        

= R. P of c 
𝑧2  𝑑𝑧

𝑖𝑧

 ( 
5𝑧+2𝑧2+2

𝑧
)
 = R. P of c 

𝑧2  𝑑𝑧

 iz( 
5𝑧+2𝑧2+2

𝑧
)
 = R. P of 

1

𝑖
 c 

𝑧2  𝑑𝑧

 2z2+5z+2
 = 

1

𝑖
 c 𝑓(𝑧)𝑑𝑧  ---------(2) 

Where f(z) = 
𝑧2  

 2z2+5z+2
 = 

𝑧2  

 (2z+1)(z+2)
 = 

𝑧2  

 2(z+
1

2
)(z+2)

 (Dr is having linear factors) 

Clearly z = - 
1

2
 and z = - 2 are simple poles of f(z) for which z = - 

1

2
 lies inside the circle lzl=1 

∴ calculate residue at z = - 
1

2
  

If R1 is the residue of f(z) at pole z = - 
1

2
 (simple pole) 

Then R1 =    lim
𝑧→− 

1

2
  
( z +  

1

2
) f(z) =  lim

𝑧→− 
1

2
  
( z + 

1

2
)

𝑧2  

 2(z+
1

2
)(z+2)

 =  lim
𝑧→− 

1

2
  

𝑧2  

 2(z+2)
 

                                                                              = 
1

4

 2(− 
1

2
 +2)

= 
1

 8( 
3

2
 )

 = 
𝟏

𝟏𝟐
                                          

∴ R1 = 
𝟏

𝟏𝟐
    

By C.R.of hm we have c 𝑓(𝑧)𝑑𝑧  =2I R1 = 2i(
𝟏

𝟏𝟐
) = 

i

𝟔
---------------(3)  

Substitute (3)  in  (2) then  given integral 02 
cos2 d

5+4cos
 =R. P.of  

1

𝑖
 c 𝑓(𝑧)𝑑𝑧  = R. P.of  

1

𝑖
 (
i

6
)  

= R. P.of  


6
  =  



6
   (b’cz real part of real no. is itself) 

Hence 02 
𝐜𝐨𝐬𝟐 𝐝

𝟓+𝟒𝐜𝐨𝐬
 = 



𝟔
  (answer should be in terms of real no. as integral is real)   

 

9. Prove that 0 [
𝟏+𝟐𝐜𝐨𝐬

𝟓+𝟒𝐬𝐢𝐧
   ] d = 0   

Soln: In this example Nr is not constant it is a function of cos, to solve example of this type 

starting procedure is different 



We have ei  = cos +isin   ∴ 1+ 2ei  =(1+ 2cos) +isin       ∴ 1+ 2cos = R.  P of (1+ 2ei ) 

       ∴
𝟏+𝟐𝐜𝐨𝐬

𝟓+𝟒𝐬𝐢𝐧
   = R.P of 

1 +2 ei

𝟓+𝟒𝐬𝐢𝐧
    

∴ Given integral 02 
𝟏+ 𝟐𝐜𝐨𝐬d

5+4cos)
 = R. P of 02 

1+ 2eid

5+4cos)
   -----------------(1)                       

Put ei  = z  so that d=  
𝑑𝑧

𝑖 𝑧
 (for all examples it is same, so we remember this) 

And  cos= 
1

2
 (z +  

1

𝑧
), C is lzl =1 

Then integral (1)  becomes0
2 

𝟏+ 𝟐𝐜𝐨𝐬d

5+4cos)
=  R. P of 02 

1+ 2𝑒𝑖 
d

5+4cos
 = R. P of c 

 (1+2𝑧)
𝑑𝑧

𝑖𝑧

(5+4
1

2
 (z + 

1

𝑧
))

  

= R. P of c 
 (1+2𝑧)

𝑑𝑧

𝑖𝑧

5+2 ( 
𝑧2+1

𝑧
)
   

                                                                        

= R. P of c 
(1+2𝑧)

𝑑𝑧

𝑖𝑧

 ( 
5𝑧+2𝑧2+2

𝑧
)
 = R. P of c 

(1+2𝑧)𝑑𝑧

 iz( 
5𝑧+2𝑧2+2

𝑧
)
 = R. P of 

1

𝑖
 c 

(1+2𝑧)𝑑𝑧

 2z2+5z+2
  

                                                                             = R. P of 
1

𝑖
 c 𝑓(𝑧)𝑑𝑧  ---------(2) 

Where f(z) = 
(1+2𝑧)

 2z2+5z+2
 = 

(1+2𝑧)

 (2z+1)(z+2)
 = 

1

 (z+2)
  

Clearly z = - 2 are simple poles of f(z) for which lies outside the circle lzl=1 

∴ By Cauchy’s Thm c 𝑓(𝑧)𝑑𝑧  = 0 

From  (2)   given integral is 02 
1+2cos d

5+4cos
 =R. P.of  

1

𝑖
 c 𝑓(𝑧)𝑑𝑧  = R. P.of  

1

𝑖
 (0)  =0    

Hence 02 
𝟏+ 𝟐𝐜𝐨𝐬 𝐝

𝟓+𝟒𝐜𝐨𝐬
 = 𝟎   

10.Using contour integration evaluate 02 [cos3 / (5+4cos)] d  (2017) 
      HOME work 

 

 

10.  Prove that 02 ecos cos(sin-n) d  = 2/n!  (2015) 

Soln: This example is again little different  

Let 𝛼 = (sin-n) then ecos cos(sin-n) = ecos cos 𝛼 = R. P of ecos (cos 𝛼+ i sin 𝛼) 

           = R. P of (ecos 𝑒𝑖𝛼 )= R. P of (ecos 𝑒𝑖(𝑠𝑖𝑛−𝑛)) = R. P of (ecos 𝑒𝑖𝑠𝑖𝑛−𝑖𝑛) 

           = R. P of (ecos +  isin 𝑒−𝑖𝑛 )= R. P of 𝑒(𝑒𝑖 )  𝑒−𝑖𝑛 = R. P of 𝑒(𝑒𝑖 ) ( 𝑒𝑖)-n 

Given Integral  is 02 ecos cos(sin-n) d = R. P of 02 𝑒(𝑒𝑖 ) ( 𝑒𝑖)-n  d ---------(1) 

Put ei  = z  so that d =  
𝑑𝑧

𝑖 𝑧
 then integral (1) becomes  

02 ecos cos(sin-n) d = R. P of 02 𝑒(𝑒𝑖 ) ( 𝑒𝑖)-n  d = R.P. of c  𝑒𝑧 𝑧−𝑛 𝑑𝑧

𝑖 𝑧
  where                            

                                                                                                               C is unit circle lzl=1 



 = R.P. of 
1

𝑖
 c  𝑒𝑧  

𝑑𝑧

𝑧𝑛+1  =  R.P. of  
1

𝑖
 c   

𝑒𝑧

𝑧𝑛+1 𝑑𝑧    (we have done example of  this type) 

                                                =   R.P. of  
1

𝑖
 c   𝑓(𝑧)𝑑𝑧  --------------(2) 

 Where f(z)  =
𝒆𝒛

𝒛𝒏+𝟏
    Clearly z =0 is a   pole of order (n+1) which is inside the circle lzl =1 . 

If R1 is residue of f(z) at z= 0 then   R1 =  
1

(𝑛+1−1)!
  lim

𝑧→0  

𝑑𝑛

𝑑𝑧𝑛
(z − 0)n f(z)  

                                                                   =
1

𝑛!
  lim

𝑧→0  

𝑑𝑛

𝑑𝑧𝑛
(z)n  

𝒆𝒛

(𝑧)𝑛
  

                                                                    = 
1

𝑛!
 lim
𝑧→𝜋  

𝑑𝑛

𝑑𝑧𝑛
 𝒆𝒛 = 

1

𝑛!
lim

𝑧→0  

 𝒆𝒛 = 
1

𝑛!
 

                                                                     = 1 

∴ By C. R. Thm c𝑓(𝑧)𝑑𝑧   =  c    
𝒆𝒛

𝒛𝒏+𝟏
   dz =  2𝜋i (R1) =  2𝜋i(

1

𝑛!
)=  

2𝜋i

𝑛!
-----------------(3)  

  Then from (2) and (3) given integral becomes 

 02 ecos cos(sin-n) d = R. P of   
1

𝑖
 c   𝑓(𝑧)𝑑𝑧  =  R. P of   

1

𝑖
(

2𝜋i

𝑛!
) = R. P of  

2𝜋

 𝑛!
 

                                                                                                   = 
2𝜋

 𝑛!
       (b’cz real part of real is itself) 

∴    02 ecos cos(sin-n) d   = 
𝟐𝝅

 𝒏!
         

𝑻𝒉𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒔 𝟐𝒏𝒅 𝒕𝒚𝒑𝒆 𝒐𝒇 𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

III. Evaluation of real integral of the type ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
 provided poles are not 

real, i.e they are only in terms imaginary) 

 for example ∫
𝒆𝒙

(𝒙+𝟐)𝟐
𝒅𝒙

∞

−∞
 cannot be solved as, pole is x= - 2 is real but example 

∫
𝒙

𝒙𝟐+𝟒
𝒅𝒙

∞

−∞
 can be solved as poles are x=±2i, which are imaginary 

Similarly ∫
𝒄𝒐𝒔𝒙

𝒙𝟐+𝟐𝒙+𝟑
𝒅𝒙

∞

−∞
 can be solved as poles are x=−𝟐 ±  𝒊 2√𝟐, which are imaginary] 

To solve examples of these types we need one lemma, called Jordan’s Lemma 

Statement for Jordan’s Lemma(Important for 2 marks): If f(z) →0 uniformly as lzl → ∞ (i.e 

region tends to hole plane) then        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒎𝒛𝒇(𝒛)𝒅𝒛  = 0 where CR is denotes  

Semi circle lzl = R, I(z)l>0 

Procedure to solve example of this type : 

Given integral   ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
                       steps are as follows 

(i) Consider the integral as c 𝒇(𝒛)𝒅𝒛 , just replace x by z and write the integral where C is 

closed contour consisting of upper half large circle CR : lzl=R and real line from –R to R 

                                                     

                         

 

(ii) Next for  f(z) , find poles and calculate residues at poles which lie inside C, let them be 

R1, R2--------- 

(iii) By C.R. Theorem we have c 𝒇(𝒛)𝒅𝒛 = 2I (sum of residues) =let it be some value K 

i.e c 𝒇(𝒛)𝒅𝒛 = K 

i.e 𝒄𝑹 𝒇(𝒛)𝒅𝒛   + ∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = K  (b’cz C consisting two parts  CR and real line from –R 

to R) 

C CR 

-R R 

Closed curve C contains two parts ,CR 

Upper half of circle lzl=R and real line 

from –R to R.  

∴ C =CR + line from –R to R  

 

 

 

(CR does not look like 

semi circle, assume it 

as  semi circle) 

 

 



     (iv)      Taking limit as 𝑹 → ∞ on both sides,  we get  

                   𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  +   𝐥𝐢𝐦
𝑹→∞ 

∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 𝐥𝐢𝐦

           𝑹→∞ 
K 

                        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  + ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = K        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = K  -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 𝒇(𝒛)𝒅𝒛    and integral 𝒄𝑹 𝒇(𝒛)𝒅𝒛  in RHS  

                       can be evaluated by Jordans Lemma or by any other method so that in all the      

                       examples  𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  = 𝟎   

                                              ∴           ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = K – 0 

                                              i.e ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
 = K  and ∫ 𝒇(𝒙)𝒅𝒙

∞

𝟎
  = 

𝟏

𝟐
 ∫ 𝒇(𝒙)𝒅𝒙

∞

−∞
 = 

𝑲

𝟐
 

 

NOTE: This procedure is same for all examples of above type. 

Examples: .  

1 . Prove that 0∞ 𝒅𝒙

𝟏+𝒙𝟐
 =  



𝟐    
  by contour integration (2015) 

Soln: Given integral 0∞ 
𝒅𝒙  

𝟏+𝒙𝟐
 

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝑑𝑧

1+𝑧2
  , taken around the closed contour C consisting of upper 

half large circle CR : lzl=R and real line from –R to R 

                                                       
 

Here f(z) =  
1

1+𝑧2
    = 

1

(𝑧+𝑖)(𝑧−𝑖)
 

Clearly Z=i, -i  are simple poles of f(z) for which Z = i lies inside C    ( where as z = -i = (0, -1) lies 
lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at z=i 
If R1 is the residue of f(z) at z =i then R1 = = lim

𝑧→ 𝑖
(z − i) f(z)  

                                                                                            = lim
𝑧→𝑖 

(z − i)
𝟏

(𝒛+𝒊)(𝒛−𝒊)
             

                                                                                             = lim
𝑧→𝑖

 
𝟏

(𝒛+𝒊)
   = 

𝟏

𝟐𝒊
   

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1)  

i.e c 𝑓(𝑧)𝑑𝑧 = 2i 
1

2𝑖
   

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  =  

Taking limit as 𝑅 → ∞ on both sides,  we get  

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 
 

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  =         ( b’cz limit of constant is constant) 

CR 

-R R 

C 



                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  =   -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
1

1+𝑥2
    𝑑𝑥

∞

−∞
  =   -   lim

𝑅→∞ 
𝑐𝑅 

1

1+𝑧2
  𝑑𝑧  ----------------------(1) 

 Consider |𝑐𝑅 
1

1+𝑧2
  𝑑𝑧 |    𝑐𝑅 |

1

1+𝑧2
|  |𝑑𝑧| = 𝑐𝑅 

1

|𝑧2+1|
  |𝑑𝑧|   

                                                    𝑐𝑅  
1

|𝑧|2−1
  |𝑑𝑧|                    [b’cz  

1

|𝑎+𝑏|
  

1

|𝑎|− |𝑏| 
  ] 

                                                  =   𝑐𝑅  
1

𝑅2−1
  |𝑑𝑧|                     [b’cz [z] = R] 

                                                  = 
1

𝑅2−1
 𝑐𝑅    |𝑑𝑧| 

                                                  =   
1

𝑅2−1
  length of the semi circle CR 

                                                  = 
1

𝑅2−1
 ( R) → 0 as R → ∞ 

                 Thus  lim
𝑅→∞ 

|𝑐𝑅
1

1+𝑧2
𝑑𝑧|    = 0  

                 =>  lim  
𝑅→∞ 

𝑐𝑅
1

1+𝑧2
𝑑𝑧 = 0 

From (1) given integral becomes ∫
1

1+𝑥2
    𝑑𝑥

∞

−∞
  =   - 0 =  

i. e 2 ∫
1

1+𝑥2
    𝑑𝑥

∞

0
 =            [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

1

1+𝑥2
 𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 

=>  ∫
1

1+𝑥2
    𝑑𝑥

∞

0
  = 



2
                                                         

 ∫
1

1+𝑥2
    𝑑𝑥

∞

0
  = 



2
   

Note: Above example can be solved even by using PUC integration, if the power of Dr increases 

we cannot evaluate by our PUC integration, so in such cases contour integration is applicable. 

 

2. Prove that    -∞∞  
𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
 = 

   

𝟒
by contour integration. (2016, 2017)   [in this example power of            

                                                                                                                                              Dr  is 2]  

Proof: Given integral 0∞ 
𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
 

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝑑𝑧

(𝟏+𝒛𝟐)
𝟐

  , taken around the closed contour C consisting of 

upper half large circle CR : lzl=R and real line from –R to R 

                                                         

Here f(z) =  
1

(𝟏+𝒛𝟐)𝟐
    = 

1

((𝑧+𝑖)(𝑧−𝑖))2
   = 

1

(𝑧+𝑖)2  (𝑧−𝑖)2
 

Clearly Z=i, -i  are  poles of f(z) of order 2 for which Z = i lies inside C    ( where as z = -i = (0, -1) lies 
lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at pole z=i (order is 2) 

If R1 is the residue of f(z) at z = i then R1 =    
1

(2−1)!
  lim

𝑧→𝑖 

𝑑

𝑑𝑧
(z − i)2 f(z)  

CR 

-R   R 

C 



                                                                             =  lim
𝑧→𝑖  

𝑑

𝑑𝑧
(z − i)2  

1

(𝑧+𝑖)2  (𝑧−𝑖)2
  

                                                                    =  lim
𝑧→𝑖  

𝑑

𝑑𝑧
 

1

(𝑧+𝑖)2  
   = lim

𝑧→𝑖  
 

−2

(𝑧+𝑖)3  
  = 

−2

(2𝑖)3  
 = 

−2

−8𝑖
  = 

1

4𝑖
 

By C.R. Theorem we have c 𝒇(𝒛)𝒅𝒛 = 2i (R1)  

i.e c 𝒇(𝒛)𝒅𝒛 = 2i 
𝟏

𝟒𝒊
   

i.e 𝒄𝑹 𝒇(𝒛)𝒅𝒛   + ∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 



𝟐
  

Taking limit as 𝑹 → ∞ on both sides,  we get  

                   𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  +   𝐥𝐢𝐦
𝑹→∞ 

∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 𝐥𝐢𝐦

           𝑹→∞ 



𝟐
 

                        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  + ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟐
        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟐
  -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 𝒇(𝒛)𝒅𝒛     

i. 𝒆 ∫
𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

−∞
  = 



𝟐
  -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 

𝒅𝒙  

(𝟏+𝒛𝟐)𝟐
  𝒅𝒛  ----------------------(1) 

 Consider |𝒄𝑹 
𝟏  

(𝟏+𝒛𝟐)𝟐
  𝒅𝒛 |    𝒄𝑹 |

𝟏  

(𝟏+𝒛𝟐)𝟐
|  |𝑑𝑧| = 𝒄𝑹 

1

|(𝒛𝟐+𝟏)𝟐|
  |𝑑𝑧|   

                                                    𝒄𝑹  
𝟏

(|𝒛|𝟐−𝟏) 𝟐
  |𝑑𝑧|                    [b’cz  

𝟏

|𝒂+𝒃|
  

𝟏

|𝒂|− |𝒃| 
  ] 

                                                  =   𝒄𝑹  
𝟏

(𝑹𝟐−𝟏) 𝟐
  |𝑑𝑧|                     [b’cz [z] = R] 

                                                  = 
𝟏

(𝑹𝟐−𝟏) 𝟐
 𝒄𝑹    |𝑑𝑧| 

                                                  =   
𝟏

(𝑹𝟐−𝟏) 𝟐
   length of the semi circle CR 

                                                  = 
𝟏

(𝑹𝟐−𝟏) 𝟐
 ( R) → 0 as R → ∞ 

                 Thus  𝐥𝐢𝐦
𝑹→∞ 

|𝒄𝑹
𝟏  

(𝟏+𝒛𝟐)𝟐
𝒅𝒛|  = 𝟎   

                 =>  𝐥𝐢𝐦  
𝑹→∞ 

𝒄𝑹
𝟏  

(𝟏+𝒛𝟐)𝟐
𝒅𝒛 = 0 

From (1) given integral becomes ∫
𝟏  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

−∞
  = 



𝟐
  - 0  

i. e 2 ∫
𝟏  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
 = 



𝟐
            =>  ∫

𝟏  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
  = 



𝟒
 

                                            

 ∫
𝟏  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
  = 



𝟒
   

Note: In example (2)  power of Dr is 2,   poles r of order 2 and hence according to that we have 

to calculate residues and proceed. 

 

3. Prove by contour integration that 0∞ 𝟏  

(𝟏+𝒙𝟐)𝟑
    dx  = 3/8.  

Soln: HOME work  

Solve as above example, poles w get as order 3. 

 



4. Evaluate by contour integration that 0∞    x2 𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
 

Soln: Given integral 0∞ 
   x2 𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
  

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
z2𝑑𝑧

(𝟏+𝒛𝟐)
𝟐

  , taken around the closed contour C consisting of 

upper half large circle CR : lzl=R and real line from –R to R                         

                                                                  

Here f(z) =  
z2

(𝟏+𝒛𝟐)𝟐
    = 

z2

((𝑧+𝑖)(𝑧−𝑖))2
   = 

z2

(𝑧+𝑖)2  (𝑧−𝑖)2
 

Clearly Z=i, -i  are  poles of f(z) of order 2 for which Z = i lies inside C    ( where as z = -i = (0, -1) lies 
lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at pole z=i (order is 2) 

If R1 is the residue of f(z) at z = i then R2 = ==   
1

(2−1)!
  lim

𝑧→𝑖 

𝑑

𝑑𝑧
(z − i)2 f(z)  

                                                                             =  lim
𝑧→𝑖  

𝑑

𝑑𝑧
(z − i)2  

z2

(𝑧+𝑖)2  (𝑧−𝑖)2
  

                                                                    =  lim
𝑧→𝑖  

𝑑

𝑑𝑧
 

z2

(𝑧+𝑖)2  
   = lim

𝑧→𝑖  
 

2𝑖𝑧

(𝑧+𝑖)3  
  = 

−2

(2𝑖)3  
 = 

−2

−8𝑖
  = 

1

4𝑖
 

By C.R. Theorem we have c 𝒇(𝒛)𝒅𝒛 = 2i (R1)  

i.e c 𝒇(𝒛)𝒅𝒛 = 2i 
𝟏

𝟒𝒊
   

i.e 𝒄𝑹 𝒇(𝒛)𝒅𝒛   + ∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 



𝟐
  

Taking limit as 𝑹 → ∞ on both sides,  we get  

                   𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  +   𝐥𝐢𝐦
𝑹→∞ 

∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 𝐥𝐢𝐦

           𝑹→∞ 



𝟐
 

                        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  + ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟐
        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟐
  -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 𝒇(𝒛)𝒅𝒛     

i. 𝒆 ∫
x2𝒅𝒙  

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

−∞
  = 



𝟐
  -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 

z2 𝒅𝒙  

(𝟏+𝒛𝟐)𝟐
  𝒅𝒛  ----------------------(1) 

 Consider |𝒄𝑹 
z2  

(𝟏+𝒛𝟐)𝟐
  𝒅𝒛 |    𝒄𝑹 |

z2  

(𝟏+𝒛𝟐)𝟐
|  |𝑑𝑧| = 𝒄𝑹 

|z2|

|(𝒛𝟐+𝟏)𝟐|
  |𝑑𝑧|= 𝒄𝑹 

|z|𝟐

|(𝒛𝟐+𝟏)𝟐|
  |𝑑𝑧|                                                             

                                                     𝒄𝑹  
|z|𝟐

(|𝒛|𝟐−𝟏) 𝟐
  |𝑑𝑧|                    [b’cz  

𝟏

|𝒂+𝒃|
  

𝟏

|𝒂|− |𝒃| 
  ] 

                                                  =   𝒄𝑹  
𝑹𝟐

(𝑹𝟐−𝟏) 𝟐
  |𝑑𝑧|                     [b’cz [z] = R] 

                                                  = 
𝑹𝟐

(𝑹𝟐−𝟏) 𝟐
 𝒄𝑹    |𝑑𝑧| 

                                                  =   
𝑹𝟐

(𝑹𝟐−𝟏) 𝟐
   length of the semi circle CR 

                                                  = 
𝑹𝟐

(𝑹𝟐−𝟏) 𝟐
 ( R) → 0 as R → ∞   (b’cz degree of Nr< degree of Dr] 

CR 

-R R 

C 



                 Thus  𝐥𝐢𝐦
𝑹→∞ 

|𝒄𝑹
z2    

(𝟏+𝒛𝟐)𝟐
𝒅𝒛|  = 𝟎   

                 =>  𝐥𝐢𝐦  
𝑹→∞ 

𝒄𝑹
z2    

(𝟏+𝒛𝟐)𝟐
𝒅𝒛 = 0 

From (1) given integral becomes ∫
𝐱𝟐    

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

−∞
  = 



𝟐
  - 0  

i. e 2 ∫
𝐱𝟐    

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
 = 



𝟐
            =>  ∫

𝐱𝟐    

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
  = 



𝟒
 

                                               

 ∫
x2    

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

𝟎
  = 



𝟒
   

 

4. Prove by contour integration that -∞∞    x2 𝒅𝒙  

(𝒂𝟐+𝒙𝟐)𝟑
dx  = /8a3, a>0 

Soln: Given integral 0∞ 
   x2 𝒅𝒙  

(𝒂𝟐+𝒙𝟐)𝟑
  

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
z2𝑑𝑧

(𝒂𝟐+𝒛𝟐)
𝟑

  , taken around the closed contour C consisting of 

upper half large circle CR : lzl=R and real line from –R to R 

                              
 

Here f(z) =  
z2

(𝒂𝟐+𝒛𝟐)𝟑
    = 

z2

((𝑧+𝑎𝑖)(𝑧−𝑎𝑖))3
   = 

z2

(𝑧+𝑎𝑖)3 (𝑧−𝑎𝑖)3
 

Clearly Z= ai, -ai  are  poles of f(z) of order 3 for which Z = ai lies inside C    ( where as z = -ai = (0, -a) 
(a>0 given), lies lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at pole z=ai (order is 3) 

If R1 is the residue of f(z) at z = ai then R1 =    
1

(3−1)!
  lim

𝑧→𝑎𝑖 

d2

𝑑z2
(z − ai)3 f(z)  

                                                                             =  lim
𝑧→𝑎𝑖  

d2

𝑑z2
(z − ai)2  

z2

(𝑧+𝑎𝑖)3  (𝑧−𝑎𝑖)3
  

                                                              = 
1

2!
 lim
𝑧→𝑎𝑖  

d2

𝑑z2
 

z2

(𝑧+𝑎𝑖)3  
   =  

1

2
lim

𝑧→𝑎𝑖  

d

𝑑z
 
2𝑖𝑎𝑧−z2 

(𝑧+𝑎𝑖)4  
   

                                                             =  
1

2
lim

𝑧→𝑎𝑖  
 
2z2−2a2−8iaz

(𝑧+𝑎𝑖)5  
   =  

1   

2

4a2

32 a5 i
  = 

1

16 a3 i
   

By C.R. Theorem we have c 𝒇(𝒛)𝒅𝒛 = 2i (R1)  

i.e c 𝒇(𝒛)𝒅𝒛 = 2i 
1

16 a3 i
   

i.e 𝒄𝑹 𝒇(𝒛)𝒅𝒛   + ∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 



𝟖 a3 
  

Taking limit as 𝑹 → ∞ on both sides,  we get  

                   𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  +   𝐥𝐢𝐦
𝑹→∞ 

∫ 𝒇(𝒙)𝒅𝒙
𝑹

−𝑹
  = 𝐥𝐢𝐦

           𝑹→∞ 



𝟖 a3 
  

CR 

-R R 

C 



                        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒇(𝒛)𝒅𝒛  + ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟖 a3 
         ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝒇(𝒙)𝒅𝒙
∞

−∞
  = 



𝟖 a3 
   -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 𝒇(𝒛)𝒅𝒛     

i. 𝒆 ∫
x2𝒅𝒙  

(𝟏+𝒙𝟐)𝟑
    𝒅𝒙

∞

−∞
  = 



𝟖 a3 
 -   𝐥𝐢𝐦

𝑹→∞ 
𝒄𝑹 

z2 𝒅𝒙  

(𝟏+𝒛𝟐)𝟑
  𝒅𝒛  ----------------------(1) 

 Consider |𝒄𝑹 
z2  

(𝟏+𝒛𝟐)𝟐
  𝒅𝒛 |    𝒄𝑹 |

z2  

(𝟏+𝒛𝟐)𝟑
|  |𝑑𝑧| = 𝒄𝑹 

|z2|

|(𝒛𝟐+𝟏)𝟑|
  |𝑑𝑧|= 𝒄𝑹 

|z|𝟐

|(𝒛𝟐+𝟏)𝟑|
  |𝑑𝑧|                                                             

                                                     𝒄𝑹  
|z|𝟐

(|𝒛|𝟐−𝟏) 𝟑
  |𝑑𝑧|                    [b’cz  

𝟏

|𝒂+𝒃|
  

𝟏

|𝒂|− |𝒃| 
  ] 

                                                  =   𝒄𝑹  
𝑹𝟐

(𝑹𝟐−𝟏) 𝟑
  |𝑑𝑧|                     [b’cz lzl = R] 

                                                  = 
𝑹𝟐

(𝑹𝟐−𝟏) 𝟑
 𝒄𝑹    |𝑑𝑧| 

                                                  =   
𝑹𝟐

(𝑹𝟐−𝟏) 𝟑
   length of the semi circle CR 

                                                  = 
𝑹𝟐

(𝑹𝟐−𝟏) 𝟑
 ( R) → 0 as R → ∞   (b’cz degree of Nr< degree of Dr] 

                 Thus  𝐥𝐢𝐦
𝑹→∞ 

|𝒄𝑹
z2    

(𝟏+𝒛𝟐)𝟑
𝒅𝒛|  = 𝟎   

                 =>  𝐥𝐢𝐦  
𝑹→∞ 

𝒄𝑹
z2    

(𝟏+𝒛𝟐)𝟑
𝒅𝒛 = 0 

From (1) given integral becomes ∫
𝐱𝟐    

(𝟏+𝒙𝟐)𝟑
    𝒅𝒙

∞

−∞
  = 



𝟖 a3 
   - 0 = 



𝟖 a3 
 

    ∫
𝐱𝟐    

(𝟏+𝒙𝟐)𝟐
    𝒅𝒙

∞

−∞
 = 



𝟖 a3 
                                                           

5. Prove that    0∞ 
𝒅𝒙  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
= 



𝟏𝟐
     by contour integration. (2009, 2018) 

Soln: Given integral 0∞ 
𝒅𝒙  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
 

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝒅𝒛  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)

  , taken around the closed contour C consisting of 

upper half large circle CR : lzl=R and real line from –R to R 

 

                                                
 

Here f(z) =  
𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
      = 

1

(𝑧+𝑖)(𝑧−𝑖)(𝑧+2𝑖)(𝑧−2𝑖)
 

Clearly Z=i, -i, 2i, -2i   are simple poles of f(z) for which Z = i and 2i  lies inside C    ( where as z = -i  i.e 
(0, -1) and z=-2i   i.e (0, -2) lies in lower part of z-plane but our region is only upper 
half of z-plane)  

calculate residue at z=i and 2i 
If R1 is the residue of f(z) at z =i then R1 =  lim

𝑧→ 𝑖
(z − i) f(z)  

CR 

-R     R    



                                                                                            = lim
𝑧→𝑖 

(z − i)   
1

(𝑧+𝑖)(𝑧−𝑖)(𝑧+2𝑖)(𝑧−2𝑖)
 

                                                                                             = lim
𝑧→𝑖

 
𝟏

(𝒛+𝒊)(𝑧+2𝑖)(𝑧−2𝑖)
   = 

𝟏

𝟐𝒊(𝟑)
    

                                                                    R1  = 
𝟏

𝟔𝒊
 

If R2 is the residue of f(z) at z =2i then R1 = =  lim
𝑧→2 𝑖

(z − 2i) f(z)  

                                                                                            = lim
𝑧→2𝑖 

(z − 2i)   
1

(𝑧+𝑖)(𝑧−𝑖)(𝑧+2𝑖)(𝑧−2𝑖)
 

                                                                                             = lim
𝑧→2𝑖

 
𝟏

(𝑧+2𝑖)(𝒛+𝒊)(𝑧−𝑖)
   = 

𝟏

𝟒𝒊(−𝟑)
  = 

𝟏

−𝟏𝟐𝒊
 

                                                                   R2= 
𝟏

−𝟏𝟐𝒊
 

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1 + R2)  

i.e c 𝑓(𝑧)𝑑𝑧 = 2i( 
1

6𝑖
  +  

1

−12𝑖
) 

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = 

2i

12𝑖
 =  



6
 

Taking limit as 𝑅 → ∞ on both sides,  we get  

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 



6
 

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 



6
        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 



6
  -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
𝟏  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
    𝑑𝑥

∞

−∞
  = 



6
  -   lim

𝑅→∞ 
𝑐𝑅 

𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
  𝑑𝑧  ----------------------(1) 

 

 Consider |𝑐𝑅 
𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
  𝑑𝑧 |    𝑐𝑅 |

𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
|  |𝑑𝑧| = 𝑐𝑅 

1

|𝑧2+1|
  

1

|𝑧2+4|
|𝑑𝑧|   

                                                    𝑐𝑅  
1

(|𝑧|2−1)(|𝑧|2−4)
  |𝑑𝑧|                    [b’cz  

1

|𝑎+𝑏|
  

1

|𝑎|− |𝑏| 
  ] 

                                                  =   𝑐𝑅  
1

(𝑅2−1)𝑅2−4)
  |𝑑𝑧|                     [b’cz [z] = R] 

                                                  = 
1

(𝑅2−1)𝑅2−4)
 𝑐𝑅    |𝑑𝑧| 

                                                  =   
1

(𝑅2−1)𝑅2−4)
  length of the semi circle CR 

                                                  = 
1

(𝑅2−1)𝑅2−4)
 ( R) → 0 as R → ∞ 

                 Thus  lim
𝑅→∞ 

|𝑐𝑅 
𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
  𝑑𝑧 |  = 0           

                 =>  lim  
𝑅→∞ 

𝑐𝑅 
𝟏  

(𝒛𝟐+𝟏)(𝒛𝟐+𝟒)
  𝑑𝑧  =  0                

From (1) given integral becomes ∫
𝟏  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
    𝑑𝑥

∞

−∞
    = 



6
  - 0 = 



6
 

i. e 2 ∫
𝟏  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
    𝑑𝑥

∞

0
   =    



6
         [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

1

1+𝑥2
 𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 

=>  ∫
𝟏  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
    𝑑𝑥

∞

0
  = 



12
           



                                            ∫
𝟏  

(𝒙𝟐+𝟏)(𝒙𝟐+𝟒)
    𝑑𝑥

∞

0
  = 



12
   

6. Prove that         0∞ 𝒙𝟐𝒅𝒙  

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
 = 



𝟐𝟎𝟎
    by contour integration. 

Soln: Given integral 0∞ 
𝒙𝟐𝒅𝒙  

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
 

Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝒛𝟐𝒅𝒛  

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)
𝟐

  , taken around the closed contour C consisting of 

upper half large circle CR : lzl=R and real line from –R to R 

 

                                                
 

Here f(z) =  
𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
      = 

𝒛𝟐 

(𝑧+3𝑖)(𝑧−3𝑖)(𝑧−2𝑖)2(𝑧+2𝑖)2
 

Clearly Z=3i, -3i are simple poles and z= 2i, -2i   are  poles of order 2 of f(z) for which Z = i and 2i  lies 
inside C    ( where as z = -3i  i.e (0, -3) and z=-2i   i.e (0, -2) lies in lower part of z-plane 
but our region is only upper half of z-plane)  

calculate residue at z=3i and 2i 
If R1 is the residue of f(z) at z =3i then R1 =  lim

𝑧→3 𝑖
(z − 3i) f(z)       ( b’cz z=3i is simple pole) 

                                                                         = lim
𝑧→3𝑖 

(z − 3i)   
𝒛𝟐 

(𝑧+3𝑖)(𝑧−3𝑖)(𝒛𝟐+𝟒)𝟐
 

 

                                                                           = lim
𝑧→3𝑖

 
𝒛𝟐 

(𝑧+3𝑖)(𝒛𝟐+𝟒)𝟐
   = 

−𝟗

𝟔𝒊(−𝟓)𝟐
    

                                                                    R1  = 
−𝟑

𝟓𝟎𝒊
 

If R2 is the residue of f(z) at z =2i then R2 = 
1

(2−1)!
  lim

𝑧→2𝑖 

𝑑

𝑑𝑧
(z − 2𝑖)2 f(z)      

                                                                         = lim
𝑧→2𝑖 

𝑑

𝑑𝑧
(z − 2𝑖)2  

𝒛𝟐 

(𝑧+3𝑖)(𝑧−3𝑖)(𝑧−2𝑖)2(𝑧+2𝑖)2
                                                 

                                                                          = lim
𝑧→2𝑖 

𝑑

𝑑𝑧
 

𝒛𝟐 

(𝑧+3𝑖)(𝑧−3𝑖)(𝑧+2𝑖)2
         

                                                                          = lim
𝑧→2𝑖 

𝑑

𝑑𝑧
 [

𝒛𝟐 

(𝒛𝟐+𝟗)(𝑧+2𝑖)2
 ] 

                                                                           =  lim
𝑧→2𝑖 

       
4𝑖{[𝟓)𝟒−𝒊(𝒛𝟐+𝟗)−𝒛𝟐(𝒛+𝟐𝒊)]

(𝒛𝟐+𝟗)
2

(𝑧+2𝑖)3
                                

                                                              R2              = 
𝟒𝒊[(𝟓)(𝟒𝒊)− 𝟐𝒊(𝟓)−(−𝟒)(𝟒𝒊)]

(𝟓)2(4𝑖)3
  = 

𝟒𝒊( 𝟐𝟔𝒊)

(25)(−64𝑖)
  =                                        

                                                                              =   
−𝟏𝟑

−200𝑖
  = 

𝟏𝟑

200𝑖
   

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1 + R2) 

CR 

-R     R    

c 



i.e c 𝑓(𝑧)𝑑𝑧 = 2i( 
−𝟑

𝟓𝟎𝒊
  +   

𝟏𝟑

200𝑖
) = 2i(  

𝟏

200𝑖
)=    



100
 

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  =  



100
 

Taking limit as 𝑅 → ∞ on both sides,  we get  

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 



100
 

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 



100
        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 



100
  -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
𝒙𝟐   

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
    𝑑𝑥

∞

−∞
  =



100
  -   lim

𝑅→∞ 
𝑐𝑅 

𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
        𝑑𝑧  ----------------------(1) 

 

 Consider |𝑐𝑅 
𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
        𝑑𝑧 |    𝑐𝑅 |

𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
   |   |𝑑𝑧| = 𝑐𝑅 

|𝑧|2

|𝑧2+9|
  

1

|(𝒛𝟐+𝟒)|
2 |𝑑𝑧|   

                                                    𝑐𝑅  
|𝑧|2

(|𝑧|2−9) (|𝑧|2−4)2  
  |𝑑𝑧|                    [b’cz  

1

|𝑎+𝑏|
  

1

|𝑎|− |𝑏| 
  ] 

              =   𝑐𝑅  
𝑅2

(𝑅2−9) (𝑅2−4)2  
  |𝑑𝑧|                     [b’cz lzl = R] 

                                                  = 
𝑅2

(𝑅2−9) (𝑅2−4)2  
 𝑐𝑅    |𝑑𝑧| 

                                                  =   
𝑅2

(𝑅2−9) (𝑅2−4)2  
  length of the semi circle CR 

                                 = 
𝑅2

(𝑅2−9) (𝑅2−4)2  
 ( R) →  0 as R →  ∞  (degree of R in Nr  <

 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑅 𝑖𝑛 𝐷r)   

                 Thus  lim
𝑅→∞ 

|𝑐𝑅 
𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
  𝑑𝑧 |  = 0          

                 =>  lim  
𝑅→∞ 

𝑐𝑅 
𝒛𝟐   

(𝒛𝟐+𝟗)(𝒛𝟐+𝟒)𝟐
  𝑑𝑧  =  0                

From (1) given integral becomes ∫
𝒙𝟐   

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
    𝑑𝑥

∞

−∞
    = 



100
  - 0 = 



100
 

i. e 2 ∫
𝒙𝟐   

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
    𝑑𝑥

∞

0
   =    



100
         [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

1

1+𝑥2
 𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 

=>  ∫
𝒛𝟐   

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
    𝑑𝑥

∞

0
  = 



200
           

                                               

 ∫
𝒛𝟐   

(𝒙𝟐+𝟗)(𝒙𝟐+𝟒)𝟐
    𝑑𝑥

∞

0
  = 



200
            

Examples where Nr is in terms trigonometric function (These examples are also important) 

7. Prove that    0∞
𝒄𝒐𝒔𝒂𝒙   

(𝒙𝟐+𝟏)
 dx  = 

  

𝟐𝒆𝒂
  by contour integration.(2012) 

Soln: Given integral ∫
𝒄𝒐𝒔𝒂𝒙   

(𝒙𝟐+𝟏)
    𝑑𝑥

∞  

0
     (starting procedure is little change) 

We know that cosax = Real Part of (cosax + isinax)  = R.P of 𝒆𝒊𝒂𝒙 

                       
𝒄𝒐𝒔𝒂𝒙   

(𝒙𝟐+𝟏)
    = R.P of 

𝒆𝒊𝒂𝒙   

(𝒙𝟐+𝟏)
     



 ∫
𝒄𝒐𝒔𝒂𝒙   

(𝒙𝟐+𝟏)
    𝑑𝑥

∞  

0
 = R.P of ∫

𝒆𝒊𝒂𝒙   

(𝒙𝟐+𝟏)
    𝑑𝑥

∞  

0
-----------------------(1) 

Consider the integral   Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝒆𝒊𝒂𝒛𝒅𝒛  

(𝒛𝟐+𝟏)

  , taken around the closed 

contour C consisting of upper half large circle CR : lzl=R and real line from –R to R 

 

                                                
 

Here f(z) =  
𝒆𝒊𝒂𝒛

𝑧2+1
    = 

𝒆𝒊𝒂𝒛

(𝑧+𝑖)(𝑧−𝑖)
 

Clearly Z=i, -i  are simple poles of f(z) for which Z = i lies inside C    ( where as z = -i = (0, -1) lies 
lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at z=i 
If R1 is the residue of f(z) at z =i then R1 = = lim

𝑧→ 𝑖
(z − i) f(z)  

                                                                                            = lim
𝑧→𝑖 

(z − i)
𝒆𝒊𝒂𝒛

(𝒛+𝒊)(𝒛−𝒊)
             

                                                                                             = lim
𝑧→𝑖

 
𝒆𝒊𝒂𝒛

(𝒛+𝒊)
   = 

𝒆−𝒂

𝟐𝒊
   

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1)  

i.e c 𝑓(𝑧)𝑑𝑧 = 2i 
𝒆−𝒂

𝟐𝒊
 

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = 𝒆−𝒂 

Taking limit as 𝑅 → ∞ on both sides,  we get  

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 
 𝒆−𝒂  

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 𝒆−𝒂        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 𝒆−𝒂  -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
𝒆𝒊𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

−∞
  = 𝒆−𝒂  -   lim

𝑅→∞ 
𝑐𝑅 

𝒆𝒊𝒂𝒛

1+𝑧2
  𝑑𝑧  ----------------------(2) 

 Consider  lim
𝑅→∞ 

𝑐𝑅 
𝒆𝒊𝒂𝒛

1+𝑧2
  𝑑𝑧   =  lim

𝑅→∞ 
𝑐𝑅 𝒆

𝒊𝒂𝒛 1

1+𝑧2
  𝑑𝑧   

      which is in the form of        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒎𝒛𝒇(𝒛)𝒅𝒛  where f(z) = 

1

1+𝑧2
 &     m=a 

     and        𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

|𝒇(𝒛)|    =          𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

  
1

1+𝑧2
     = 0       

 by Jordan’s Lemma,    𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒂𝒛 𝟏

𝟏+𝒛𝟐
  𝒅𝒛  = 0     (in these examples we r using J.Lemm) 

From (2) we have  ∫
𝒆𝒊𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

−∞
  = 𝒆−𝒂  -  0 

i. e 2 ∫
𝒆𝒊𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

0
 = 𝒆−𝒂           [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

1

1+𝑥2
 𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 
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 ∫
𝒆𝒊𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

0
 = ½ 𝒆−𝒂              

From (1) given integral ∫
𝒄𝒐𝒔𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

0
 = R.P.of ∫

𝒆𝒊𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

0
 = R.P. of  (½ 𝒆−𝒂 )           

                                                                   = ½ 𝒆−𝒂      

                                                                   = 


𝟐𝒆𝒂
 

       

 ∫
𝒄𝒐𝒔𝒂𝒙

1+𝑥2
    𝑑𝑥

∞

0
  = 



𝟐𝒆𝒂
 

 

8. Prove that    0∞ cosmx dx /(a2+x2) = (/2a)e-ma  ,  a,m>0 by contour integration.(2011, 13, 14) 
HOME work: same as above example , in the place of x2+1 it is x2+a2, so poles are ai, -ai. 
 
 
 
 
 

8. Prove that    0∞ 𝒄𝒐𝒔𝒎𝒙

(𝒂𝟐+𝒙𝟐)𝟐
 dx = 



𝟒𝒂𝟐
 (1+ma)e-ma  ,  a,m>0 by contour integration. 

Soln: Given integral  0∞  𝑐𝑜𝑠𝑚𝑥

(𝑎2+𝑥2)2 dx = R.P of 0∞  𝑒𝑖𝑚𝑥

(𝑎2+𝑥2)2 dx-------------(1) 

 

Consider the integral   Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝒆𝒊𝒎𝒛𝒅𝒛  

(𝑎2+𝑧2)
2

  , taken around the closed 

contour C consisting of upper half large circle CR : lzl=R and real line from –R to R 

 

                                                
 

Here f(z) =  
𝒆𝒊𝒎𝒛  

(𝑎2+𝑧2)
2

    = 
𝒆𝒊𝒎𝒛

[(𝑧+𝑎𝑖)(𝑧−𝑎𝑖)]2
  = 

𝒆𝒊𝒎𝒛

(𝑧+𝑎𝑖)2(𝑧−𝑎𝑖)2
   

Clearly Z=ai, -ai  are poles of order 2 of f(z) for which Z = ai lies inside C    ( where as z = -ai = (0, -a)  
lies lower part of z-plane  ( b’cz a>0) but our region is only upper half of z-plane)  

calculate residue at z=ai 

If R1 is the residue of f(z) at z =ai then R1 = = 
1

(2−1)!
  lim

𝑧→𝑎𝑖 

𝑑

𝑑𝑧
(z − 𝑎𝑖)2 f(z)      

                                                                         = lim
𝑧→𝑎𝑖 

𝑑

𝑑𝑧
(z − 𝑎𝑖)2  

𝒆𝒊𝒎𝒛

(𝑧+𝑎𝑖)2(𝑧−𝑎𝑖)2
                                                 

                                                                          = lim
𝑧→𝑎𝑖 

𝑑

𝑑𝑧
 

𝒆𝒊𝒎𝒛

(𝑧+𝑎𝑖)2
         

                                                                          = lim
𝑧→𝑎𝑖 

 [
(𝑧+𝑎𝑖)2  𝒆𝒊𝒎𝒛(𝒊𝒎 )− 𝒆𝒊𝒎𝒛𝟐(𝒛+𝒊𝒂)

(𝑧+𝑎𝑖)4
 ] 

                                                                           = lim
𝑧→𝑎𝑖 

 [
(𝑧+𝑖𝑎)𝒆𝒊𝒎𝒛(𝒊𝒎 )− 𝒆𝒊𝒎𝒛  𝟐

(𝑧+𝑎𝑖)3
 ]                                
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                                                              R1              = 
𝒆−𝒂𝒎(𝟐𝒊𝒂(𝒊𝒎)−𝟐)

(2𝑎𝑖)3
  = 

−𝟐𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

−𝟖𝒊(𝑎)3
                                          

                                                                              =   
𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒𝒊(𝑎)3
 

  

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1)  

i.e c 𝑓(𝑧)𝑑𝑧 = 2i 
𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒𝒊(𝑎)3
 

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
 

Taking limit as 𝑅 → ∞ on both sides,  we get  

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
  

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
   ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
  -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
𝒆𝒊𝒎𝒙  

(𝑎2+𝑥2)
2     𝑑𝑥

∞

−∞
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
    -   lim

𝑅→∞ 
𝑐𝑅 

𝒆𝒊𝒎𝒛  

(𝑎2+𝑧2)
2   𝑑𝑧  ----------------------(2) 

 Consider  lim
𝑅→∞ 

𝑐𝑅 
𝒆𝒊𝒎𝒛  

(𝑎2+𝑧2)
2   𝑑𝑧   =  lim

𝑅→∞ 
𝑐𝑅 𝒆

𝒊𝒎𝒛  𝟏 

(𝑎2+𝑧2)
2   𝑑𝑧   

      which is in the form of        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒎𝒛𝒇(𝒛)𝒅𝒛  where f(z) = 

 𝟏 

(𝑎2+𝑧2)
2
 ,   

     and        𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

|𝒇(𝒛)|    =          𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

  
 𝟏 

(𝑎2+𝑧2)
2     = 0       

 by Jordan’s Lemma,    𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒎𝒛  𝟏 

(𝑎2+𝑧2)
2   𝒅𝒛  = 0     (in these examples we r using J.Lemm) 

From (2) we have  ∫
𝒆𝒊𝒎𝒙  

(𝑎2+𝑥2)
2     𝑑𝑥

∞

−∞
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
    -  0 

i. e 2 ∫
𝒆𝒊𝒎𝒙  

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
 = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟐(𝑎)3
      [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

 𝟏 

(𝑎2+𝑧2)
2  𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 

 ∫
𝒆𝒊𝒎𝒙  

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
 = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒(𝑎)3
                  

From (1) given integral ∫
𝒄𝒐𝒔𝒎𝒙

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
 = R.P.of ∫

𝒆𝒊𝒎𝒙  

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
 = R.P. of  (

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒(𝑎)3
)                            

                                                                   = 
 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒(𝑎)3
 

                                                                    
       

 ∫
𝒄𝒐𝒔𝒎𝒙

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
  = 

 𝒆−𝒂𝒎(𝒂𝒎+𝟏) 

𝟒(𝑎)3
 

 

In above example, particularly (i) if m=1 then∫
𝑐𝑜𝑠𝑥

(𝑎2+𝑥2)
2     𝑑𝑥

∞

0
  = 

 𝑒−𝑎(𝑎+1) 

4(𝑎)3
 

                                             (ii) if a=1 then∫
𝑐𝑜𝑠𝑚𝑥

(1+𝑥2)
2     𝑑𝑥

∞

0
  = 

 𝑒−𝑚(𝑚+1) 

4
             

                                             (iii) If m=1 and a=1 then∫
𝑐𝑜𝑠𝑥

(1+𝑥2)
2     𝑑𝑥

∞

0
  = 

 𝑒−12 

4
  =  

 

2𝑒
       

  



 9.  Prove that    0∞ 
𝒙𝒔𝒊𝒏𝒙

(𝒂𝟐+𝒙𝟐)
 dx = 

 

𝟐𝐞𝐚  
   a,>0 by contour integration. 

Soln: Now integral    −∞∞
𝑥𝑠𝑖𝑛𝑥

(𝑎2+𝑥2)
  𝑑𝑥 = Imaginary Part of  ∞∞

𝑥𝑒𝑖𝑥

(𝑎2+𝑥2)
  𝑑𝑥   [b’cz of sinx] 

 Consider the integral   Consider the integral c 𝑓(𝑧)𝑑𝑧  = c 
𝒛𝒆𝒊𝒛𝒅𝒛  

(𝒂𝟐+𝒛𝟐)

  , taken around the closed 

contour C consisting of upper half large circle CR : lzl=R and real line from –R to R 

 

                                                
 

Here f(z) =  
𝑧𝒆𝒊𝒛

𝑧2+𝑎2
    = 

𝑧𝒆𝒊𝒛

(𝑧+𝑎𝑖)(𝑧−𝑎𝑖)
 

Clearly Z=ai, -ai  are simple poles of f(z) for which Z = ai lies inside C    ( where as z = -ai = (0, -a) lies 
lower part of z-plane but our region is only upper half of z-plane)  

calculate residue at z=ai 
If R1 is the residue of f(z) at z =ai then R1 = = lim

𝑧→ 𝑖
(z − ai) f(z)  

                                                                                            = lim
𝑧→𝑎𝑖 

(z − ai)
𝒛𝒆𝒛

(𝒛+𝒂𝒊)(𝒛−𝒂𝒊)
             

                                                                                             = lim
𝑧→𝑎𝑖

 
𝒛𝒆𝒊𝒛

(𝒛+𝒂𝒊)
   = 

𝒊𝒂 𝒆−𝒂

𝟐𝒊𝒂
  = 

 𝒆−𝒂

𝟐
 

By C.R. Theorem we have c 𝑓(𝑧)𝑑𝑧 = 2i (R1)  

i.e c 𝑓(𝑧)𝑑𝑧 = 2i 
𝒆−𝒂

𝟐
 = i𝒆−𝒂  

i.e 𝑐𝑅 𝑓(𝑧)𝑑𝑧   + ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = i𝒆−𝒂 

Taking limit as 𝑅 → ∞ on both sides,  we get  

 

                   lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  +   lim
𝑅→∞ 

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
  = lim

           𝑅→∞ 
𝑖  𝒆−𝒂  

                        lim
𝑅→∞ 

𝑐𝑅 𝑓(𝑧)𝑑𝑧  + ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  = i 𝒆−𝒂        ( b’cz limit of constant is constant) 

                       ∴           ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
  =  i𝒆−𝒂  -   lim

𝑅→∞ 
𝑐𝑅 𝑓(𝑧)𝑑𝑧     

i. 𝑒 ∫
𝑥𝒆𝒊𝒙

𝑥2+𝑎2
    𝑑𝑥

∞

−∞
  =  i𝒆−𝒂  -   lim

𝑅→∞ 
𝑐𝑅 

𝑧𝒆𝒊𝒛

𝑧2+𝑎2
  𝑑𝑧  ----------------------(2) 

 Consider  lim
𝑅→∞ 

𝑐𝑅 
𝑧𝒆𝒊𝒛

𝑧2+𝑎2
  𝑑𝑧   =  lim

𝑅→∞ 
𝑐𝑅 𝒆

𝒊𝒛 𝑧

𝑧2+𝑎2
  𝑑𝑧   

      which is in the form of        𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒎𝒛𝒇(𝒛)𝒅𝒛  where f(z) = 

𝑧

𝑧2+𝑎2
 &     m=1 

     and        𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

|𝒇(𝒛)|    =          𝐥𝐢𝐦
𝒍𝒛𝒍→∞ 

  
𝑧

1+𝑧2
     = 0       

 by Jordan’s Lemma,    𝐥𝐢𝐦
𝑹→∞ 

𝒄𝑹 𝒆
𝒊𝒛 𝟏

𝟏+𝒛𝟐
  𝒅𝒛  = 0      

From (2) we have  ∫
𝑥𝒆𝒊𝒙

𝑥2+𝑎2
    𝑑𝑥

∞

−∞
  = i 𝒆−𝒂  -  0 
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integral ∫
 𝒙 𝒔𝒊𝒏𝒙

1+𝑥2
    𝑑𝑥

∞  

−∞
 = I.P.of ∫

𝒆𝒊𝒙

1+𝑥2
    𝑑𝑥

∞

−∞
 = I.P. of  (i 𝒆−𝒂 )           

                                                                   = 𝒆−𝒂       [ b’cz imaginary part of imaginary no. is itself] 

                                                                   = 


𝒆𝒂
 

 

i. e 2 ∫
𝑥𝒔𝒊𝒏𝒙

𝑥2+𝑎2
    𝑑𝑥

∞

0
 = 



𝒆𝒂
           [ b’cz ∫ 𝑓(𝑥)  𝑑𝑥

𝑎

−𝑎
 = 2∫

𝑥 𝑠𝑖𝑛𝑥

1+𝑥2
 𝑑𝑥 

𝑎

0
𝑎𝑠 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑐𝑡𝑖𝑜𝑛] 

 ∫
𝑥𝒔𝒊𝒏𝒙

𝑥2+𝑎2
    𝑑𝑥

∞

0
 = ½ 𝒆−𝒂              

 given integral ∫
𝑥𝒔𝒊𝒏𝒙

𝑥2+𝑎2
    𝑑𝑥

∞

0
 = 



𝟐𝒆𝒂
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